Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Ingénierie des caractéristiquesL'ingénierie des caractéristiques (en anglais feature engineering) a un rôle important, notamment dans l’analyse des données. Sans données, les algorithmes d’exploitation et d’apprentissage automatique de données ne seront pas en mesure de fonctionner. En effet, il s’avère qu’en réalité, on ne pourrait réaliser que peu de choses si nous ne disposions que de très peu de caractéristiques afin de pouvoir représenter les données, ou les banques de données, sous-jacentes.
Ontology languageIn computer science and artificial intelligence, ontology languages are formal languages used to construct ontologies. They allow the encoding of knowledge about specific domains and often include reasoning rules that support the processing of that knowledge. Ontology languages are usually declarative languages, are almost always generalizations of frame languages, and are commonly based on either first-order logic or on description logic.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
MéthodologieLa méthodologie est l'étude de l'ensemble des méthodes scientifiques. Elle peut être considérée comme la science de la méthode, ou « méthode des méthodes » (comme il y a une métalinguistique ou linguistique des linguistiques et une métamathématique ou mathématique des mathématiques). Alors, la méthodologie est une classe de méthodes, une sorte de boîte à outils où chaque outil est une méthode de la même catégorie, comme il y a une méthodologie analytique du déterminisme causal et une méthodologie systémique finaliste de la téléologie.
Ontologie (philosophie)L'ontologie est une branche de la philosophie et plus spécifiquement de la métaphysique qui, dans son sens le plus général, s'interroge sur la signification du mot « être ». est une question considérée comme inaugurale, c'est-à-dire première dans le temps et première dans l'ordre de la connaissance. Elle est celle des premiers penseurs de la Grèce antique, tels Parménide et Platon. Elle déborde très largement le strict cadre de la métaphysique qui, née chez Aristote, étudie les différentes modalités et propriétés de l'être (ne posant déjà plus de problème en soi), avec quoi on a tendance à la confondre.
Apprentissage actifL’apprentissage actif est un modèle d’apprentissage semi-supervisé où un oracle intervient au cours du processus. Plus précisément, contrairement au cadre classique où les données sont connues et imposées, en apprentissage actif, c'est l'algorithme d'apprentissage qui demande des informations pour des données précises. Cette technique repose sur l'hypothèse que l’acquisition de données non étiquetées est beaucoup moins coûteuse que celle de données étiquetées.
Connaissance tacitevignette|Le sergent d'état-major. Anette Aldridge de West Jordan, Utah, une linguiste française servant avec la compagnie C, 142e bataillon de renseignement militaire, Les connaissances tacites regroupent les compétences innées ou acquises, le savoir-faire et l'expérience. Elles sont généralement difficiles à « formaliser » par opposition aux connaissances explicites. Dans une entreprise, la connaissance tacite peut s'assimiler au capital intellectuel. C'est un actif intangible.
Situated cognitionSituated cognition is a theory that posits that knowing is inseparable from doing by arguing that all knowledge is situated in activity bound to social, cultural and physical contexts. Situativity theorists suggest a model of knowledge and learning that requires thinking on the fly rather than the storage and retrieval of conceptual knowledge. In essence, cognition cannot be separated from the context. Instead knowing exists, in situ, inseparable from context, activity, people, culture, and language.