Reconstructing lensless image with ML models and deploying them onto embedded systems
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this thesis we present and analyze approximation algorithms for three different clustering problems. The formulations of these problems are motivated by fairness and explainability considerations, two issues that have recently received attention in the ...
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
Wearable solutions based on Deep Learning (DL) for real-time ECG monitoring are a promising alternative to detect life-threatening arrhythmias. However, DL models suffer of a large memory footprint, which hampers their adoption in portable technologies. Th ...
Epilepsy is one of the most common neurological disorders that is characterized by recurrent and unpredictable seizures. Wearable systems can be used to detect the onset of a seizure and notify family members and emergency units for rescue. The majority of ...
Finding optimal bidding strategies for generation units in electricity markets would result in higher profit. However, it is a challenging problem due to the system uncertainty which is due to the lack of knowledge of the strategies of other generation uni ...
Remote health monitoring has attracted a lot of attention over the past decades to provide the opportunity for early detection of pathological health conditions. This early detection improves the quality of life for the patients and significantly reduces t ...
Optimizing resource utilization in target platforms is key to achieving high performance during DNN inference. While optimizations have been proposed for inference latency, memory footprint, and energy consumption, prior hardware-aware neural architecture ...
We present a discriminative clustering approach in which the feature representation can be learned from data and moreover leverage labeled data. Representation learning can give a similarity-based clustering method the ability to automatically adapt to an ...
The success of deep learning may be attributed in large part to remarkable growth in the size and complexity of deep neural networks. However, present learning systems raise significant efficiency concerns and privacy: (1) currently, training systems are l ...
Measuring bathymetry has always been a major scientific and technological challenge. In this work, we used a deep learning technique for inferring bathymetry from the depth-averaged velocity field. The training of the neural network is based on 5742 labora ...