Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this work, we develop a new framework for dynamic network flow pro-blems based on optimal transport theory. We show that the dynamic multicommodity minimum-cost network flow problem can be formulated as a multimarginal optimal transport problem, where the cost function and the constraints on the marginals are asso-ciated with a graph structure. By exploiting these structures and building on recent advances in optimal transport theory, we develop an efficient method for such entropy -regularized optimal transport problems. In particular, the graph structure is utilized to efficiently compute the projections needed in the corresponding Sinkhorn iterations, and we arrive at a scheme that is both highly computationally efficient and easy to implement. To illustrate the performance of our algorithm, we compare it with a state-of-the-art linear programming (LP) solver. We achieve good approximations to the solution at least one order of magnitude faster than the LP solver. Finally, we showcase the methodology on a traffic routing problem with a large number of commodities.
Daniel Gatica-Perez, Sina Sajadmanesh
Ali H. Sayed, Stefan Vlaski, Elsa Rizk
Quoc Viet Hung Nguyen, Thành Tâm Nguyên, Chi Thang Duong, Trung-Dung Hoang