Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The problem of learning graphons has attracted considerable attention across several scientific communities, with significant progress over the re-cent years in sparser regimes. Yet, the current techniques still require diverg-ing degrees in order to succeed with efficient algorithms in the challenging cases where the local structure of the graph is homogeneous. This paper pro-vides an efficient algorithm to learn graphons in the constant expected degree regime. The algorithm is shown to succeed in estimating the rank-k projec-tion of a graphon in the L2 metric if the top k eigenvalues of the graphon satisfy a generalized Kesten-Stigum condition.
Jiri Vanicek, Alan Scheidegger, Nikolay Golubev