Calcul des prédicatsEn logique mathématique, le calcul des prédicats du premier ordre, ou calcul des relations, logique quantificationnelle, ou tout simplement calcul des prédicats, est un système formel utilisé pour raisonner et décrire des énoncés en mathématiques, informatique, intelligence artificielle, philosophie et linguistique. Il a été proposé par Gottlob Frege une formalisation du langage des mathématiques entre la fin du et le début du .
Fonction de Mittag-LefflerEn mathématiques, la fonction de Mittag-Leffler, notée qui tient son nom du mathématicien Gösta Mittag-Leffler, est une fonction spéciale, c’est-à-dire qui ne peut être calculée à partir d'équations rationnelles, qui s'applique dans le plan complexe et dépend de deux paramètres complexes et . La fonction est définie pour : Dans ce cas, la série converge pour toute valeur d'argument z, ce qui fait de la fonction une fonction entière. On désigne également la fonction E(z) = E(z) comme fonction de Mittag-Leffler.
Demi-entierEn mathématiques, un demi-entier est un nombre de la forme , où est un entier relatif. Par exemple, sont des demi-entiers. Remarquons que la moitié d’un entier n’est pas toujours un demi-entier. Par exemple, la moitié d’un entier pair est un entier mais pas un demi-entier. Les demi-entiers sont précisément les nombres qui sont la moitié d’un entier impair. L’ensemble des demi-entiers est souvent noté . Les demi-entiers apparaissent assez fréquemment dans les textes mathématiques dans lesquelles il est pratique de leur donner un nom.
Degenerate conicIn geometry, a degenerate conic is a conic (a second-degree plane curve, defined by a polynomial equation of degree two) that fails to be an irreducible curve. This means that the defining equation is factorable over the complex numbers (or more generally over an algebraically closed field) as the product of two linear polynomials. Using the alternative definition of the conic as the intersection in three-dimensional space of a plane and a double cone, a conic is degenerate if the plane goes through the vertex of the cones.
Riesz potentialIn mathematics, the Riesz potential is a potential named after its discoverer, the Hungarian mathematician Marcel Riesz. In a sense, the Riesz potential defines an inverse for a power of the Laplace operator on Euclidean space. They generalize to several variables the Riemann–Liouville integrals of one variable. If 0 < α < n, then the Riesz potential Iαf of a locally integrable function f on Rn is the function defined by where the constant is given by This singular integral is well-defined provided f decays sufficiently rapidly at infinity, specifically if f ∈ Lp(Rn) with 1 ≤ p < n/α.
Théorème de Pascaldroite|200x200px En géométrie projective, le théorème de Pascal est un théorème concernant un hexagone inscrit dans une conique . Étant donné un hexagone d'un plan projectif sur un corps commutatif quelconque, il y a équivalence entre les deux propositions suivantes : Les "côtés" de l'hexagone sont les droites joignant deux points consécutifs de l'hexagone. Si deux côtés opposés sont confondus, leur intersection est une droite.