Combining biophysical models and machine learning to optimize implant geometry and stimulation protocol for intraneural electrodes
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
Implantable neural interfaces with the central and peripheral nervous systems are currently used to restore sensory, motor, and cognitive functions in disabled people with very promising results. They have also been used to modulate autonomic activities to ...
In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
The ability to reason, plan and solve highly abstract problems is a hallmark of human intelligence. Recent advancements in artificial intelligence, propelled by deep neural networks, have revolutionized disciplines like computer vision and natural language ...
Recently, cutting-edge brain-machine interfaces (BMIs) have revealed the potential of decoders such as recurrent neural networks (RNNs) in predicting attempted handwriting [1] or speech [2], enabling rapid communication recovery after paralysis. However, c ...
Neuroprostheses have been used clinically for decades, to help restore or preserve brain functions, when pharmaceutical treatments are inefficient. Although great progress in the field has been made over the years to interface with the nervous system, surf ...
Proprioception tells the brain the state of the body based on distributed sensors in the body. However, the principles that govern proprioceptive processing from those distributed sensors are poorly understood. Here, we employ a task-driven neural network ...
In this PhD manuscript, we explore optimisation phenomena which occur in complex neural networks through the lens of 2-layer diagonal linear networks. This rudimentary architecture, which consists of a two layer feedforward linear network with a diagonal ...