Publication

Equivariant Neural Architectures for Representing and Generating Graphs

Publications associées (316)

Maximum Independent Set: Self-Training through Dynamic Programming

Volkan Cevher, Grigorios Chrysos, Efstratios Panteleimon Skoulakis

This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP). Specifically, given a graph, we propose a DP-like recursive algorithm based on GNNs that firstly construc ...
2023

GAP: Differentially Private Graph Neural Networks with Aggregation Perturbation

Daniel Gatica-Perez, Sina Sajadmanesh

In this paper, we study the problem of learning Graph Neural Networks (GNNs) with Differential Privacy (DP). We propose a novel differentially private GNN based on Aggregation Perturbation (GAP), which adds stochastic noise to the GNN's aggregation functio ...
Berkeley2023

Novel Ordering-based Approaches for Causal Structure Learning in the Presence of Unobserved Variables

We propose ordering-based approaches for learning the maximal ancestral graph (MAG) of a structural equation model (SEM) up to its Markov equivalence class (MEC) in the presence of unobserved variables. Existing ordering-based methods in the literature rec ...
Association for the Advancement of Artificial Intelligence (AAAI)2023

Privacy-Preserving Machine Learning on Graphs

Sina Sajadmanesh

Graph Neural Networks (GNNs) have emerged as a powerful tool for learning on graphs, demonstrating exceptional performance in various domains. However, as GNNs become increasingly popular, new challenges arise. One of the most pressing is the need to ensur ...
EPFL2023

DiGress: Discrete Denoising diffusion for graph generation

Pascal Frossard, Volkan Cevher, Igor Krawczuk, Bohan Wang, Clément Arthur Yvon Vignac

This work introduces DiGress, a discrete denoising diffusion model for generating graphs with categorical node and edge attributes. Our model utilizes a discrete diffusion process that progressively edits graphs with noise, through the process of adding or ...
2023

Acceleration of graph pattern mining and applications to financial crime

Jovan Blanusa

Various forms of real-world data, such as social, financial, and biological networks, can berepresented using graphs. An efficient method of analysing this type of data is to extractsubgraph patterns, such as cliques, cycles, and motifs, from graphs. For i ...
EPFL2023

Graph neural networks for dynamic modeling of roller bearings

Olga Fink, Vinay Sharma

Machine learning has paved the way for the real-time monitoring of complex infrastructure and industrial systems. However, purely data-driven methods have not been able to learn the underlying dynamics and generalize them to operating conditions that have ...
PHM Society2023

Unsupervised Graph Representation Learning with Cluster-aware Self-training and Refining

Yichen Xu, Qiang Liu, Feng Yu

Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision while preserving graph topological structures and node attributive features. Previous Graph Neural Networks (GNN) require a large number of labeled ...
New York2023

Beyond Spectral Gap: The Role of the Topology in Decentralized Learning

Martin Jaggi, Thijs Vogels, Hadrien Hendrikx

In data-parallel optimization of machine learning models, workers collaborate to improve their estimates of the model: more accurate gradients allow them to use larger learning rates and optimize faster. In the decentralized setting, in which workers commu ...
Brookline2023

Backpropagation-free training of deep physical neural networks

Romain Christophe Rémy Fleury, Ali Momeni, Matthieu Francis Malléjac, Babak Rahmani, Marc Philipp Del Hougne

Recent successes in deep learning for vision and natural language processing are attributed to larger models but come with energy consumption and scalability issues. Current training of digital deep-learning models primarily relies on backpropagation that ...
2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.