Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
With the current exponential growth of video-based social networks, video retrieval using natural language is receiving ever-increasing attention. Most existing approaches tackle this task by extracting individual frame-level spatial features to represent ...
This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables. Using finite mixture models (FMMs) as the prototypical Bayesian network, we show that maximum- ...
Enabling autonomous driving (AD) can be considered one of the biggest challenges in today?s technology. AD is a complex task accomplished by several functionalities, with environment perception being one of its core functions. Environment perception is usu ...
Image super-resolution is a classic ill-posed computer vision and image processing problem, addressing the question of how to reconstruct a high-resolution image from its low-resolution counterpart. Current state-of-the-art methods have improved the perfor ...
EPFL2021
, , , ,
While supervised object detection and segmentation methods achieve impressive accuracy, they generalize poorly to images whose appearance significantly differs from the data they have been trained on. To address this when annotating data is prohibitively e ...
2022
Training convolutional neural networks (CNNs) for very high-resolution images requires a large quantity of high-quality pixel-level annotations, which is extremely labor-intensive and time-consuming to produce. Moreover, professional photograph interpreter ...
Stereo matching aims to perceive the 3D geometric configuration of scenes and facilitates a variety of computer vision in advanced driver assistance systems (ADAS) applications. Recently, deep convolutional neural networks (CNNs) have shown dramatic perfor ...
Over the past few years, there have been fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. The amount of annotated data drastically increased and supervised deep discriminative models exceed ...
Recent advances in transfer learning and few-shot learning largely rely on annotated data related to the goal task during (pre-)training. However, collecting sufficiently similar and annotated data is often infeasible. Building on advances in self-supervis ...
2020
, , ,
Despite significant progress toward super resolving more realistic images by deeper convolutional neural networks (CNNs), reconstructing fine and natural textures still remains a challenging problem. Recent works on single image super resolution (SISR) are ...