Scale of temperatureScale of temperature is a methodology of calibrating the physical quantity temperature in metrology. Empirical scales measure temperature in relation to convenient and stable parameters or reference points, such as the freezing and boiling point of water. Absolute temperature is based on thermodynamic principles: using the lowest possible temperature as the zero point, and selecting a convenient incremental unit. Celsius, Kelvin, and Fahrenheit are common temperature scales.
Échelle RankineL'échelle Rankine est une échelle de température nommée en l'honneur de l'ingénieur et physicien écossais William John Macquorn Rankine, qui la proposa en 1859. Le zéro de l'échelle Rankine est celui de l'échelle kelvin, c'est-à-dire le zéro absolu. Donc = = zéro absolu. En revanche, l'unité utilisée par l'échelle Rankine est celle de l'échelle Fahrenheit. Par conséquent, une différence d'un degré Ra est égale à une différence d'un degré F. Catégorie:Unité de mesure thermodynamique Catégorie:Échelle de temp
Function approximationIn general, a function approximation problem asks us to select a function among a that closely matches ("approximates") a in a task-specific way. The need for function approximations arises in many branches of applied mathematics, and computer science in particular , such as predicting the growth of microbes in microbiology. Function approximations are used where theoretical models are unavailable or hard to compute.
Température thermodynamiqueLa température thermodynamique est une formalisation de la notion expérimentale de température et constitue l’une des grandeurs principales de la thermodynamique. Elle est intrinsèquement liée à l'entropie. Usuellement notée , la température thermodynamique se mesure en kelvins (symbole K). Encore souvent qualifiée de « température absolue », elle constitue une mesure absolue parce qu’elle traduit directement le phénomène physique fondamental qui la sous-tend : l’agitation des constituant la matière (translation, vibration, rotation, niveaux d'énergie électronique).
Codage neuronalLe codage neuronal désigne, en neurosciences, la relation hypothétique entre le stimulus et les réponses neuronales individuelles ou globales. C'est une théorie sur l'activité électrique du système nerveux, selon laquelle les informations, par exemple sensorielles, numériques ou analogiques, sont représentées dans le cerveau par des réseaux de neurones. Le codage neuronal est lié aux concepts du souvenir, de l'association et de la mémoire sensorielle.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Température négativeCertains systèmes quantiques liés à la résonance magnétique nucléaire dans les cristaux ou les gaz ultrafroids possèdent des distributions d'énergie particulières pouvant être entièrement peuplées dans l'état de plus basse énergie (zéro absolu) mais également dans l'état de plus haute énergie. L'expression habituelle donnant la température d'un système à volume constant : (avec la température absolue, l'énergie interne, l'entropie, le volume) conduit donc à une fonction non définie au maximum d'entropie et négative au-delà.
Intervalle de confiancevignette|Chaque ligne montre 20 échantillons tirés selon la loi normale de moyenne μ. On y montre l'intervalle de confiance de niveau 50% pour la moyenne correspondante aux 20 échantillons, marquée par un losange. Si l'intervalle contient μ, il est bleu ; sinon il est rouge. En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire.
Neurosciences computationnellesLes neurosciences computationnelles (NSC) sont un champ de recherche des neurosciences qui s'applique à découvrir les principes computationnels des fonctions cérébrales et de l'activité neuronale, c'est-à-dire des algorithmes génériques qui permettent de comprendre l'implémentation dans notre système nerveux central du traitement de l'information associé à nos fonctions cognitives. Ce but a été défini en premier lieu par David Marr dans une série d'articles fondateurs.
Fonction objectifvignette|comparaison de certains substituts de la fonction de perte Le terme fonction objectif ou fonction économique, est utilisé en optimisation mathématique et en recherche opérationnelle pour désigner une fonction qui sert de critère pour déterminer la meilleure solution à un problème d'optimisation. Elle associe une valeur à une instance d'un problème d'optimisation. Le but du problème d'optimisation est alors de minimiser ou de maximiser cette fonction jusqu'à l'optimum, par différents procédés comme l'algorithme du simplexe.