Désintégration du protonEn physique des particules, la désintégration du proton désigne un mode hypothétique de décroissance radioactive dans laquelle le proton se désintègre en des particules subatomiques plus légères, comme le pion neutre et le positron. Il n'existe actuellement aucune preuve expérimentale indiquant que la désintégration du proton se produise ; ce qui place la demi-vie théorique du proton à une valeur supérieure à 10 années. Dans le modèle standard, les protons (un type de baryon), sont théoriquement stables parce que le nombre baryonique est censé se conserver.
Capacité thermique massiqueLa capacité thermique massique (symbole usuel c), anciennement appelée chaleur massique ou chaleur spécifique, est la capacité thermique d'un matériau rapportée à sa masse. C'est une grandeur qui reflète la capacité d'un matériau à accumuler de l'énergie sous forme thermique, pour une masse donnée, quand sa température augmente. Une grande capacité thermique signifie qu'une grande quantité d'énergie peut être stockée, moyennant une augmentation relativement faible de la température.
Particle decayIn particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the final state) must each be less massive than the original, although the total invariant mass of the system must be conserved. A particle is unstable if there is at least one allowed final state that it can decay into. Unstable particles will often have multiple ways of decaying, each with its own associated probability.
Capacité thermiqueLa capacité thermique (anciennement capacité calorifique) d'un corps est une grandeur qui mesure la chaleur qu'il faut lui transférer pour augmenter sa température d'un kelvin. Inversement, elle permet de quantifier la possibilité qu'a ce corps d'absorber ou de restituer de la chaleur au cours d'une transformation pendant laquelle sa température varie. Elle s'exprime en joules par kelvin (). C'est une grandeur extensive : plus la quantité de matière est importante, plus la capacité thermique est grande.
Jeu de donnéesvignette|Représentation du jeu de données Iris sur ses quatre dimensions|420x420px Un jeu de données (en anglais dataset ou data set) est un ensemble de valeurs « organisées » ou « contextualisées » (alias « données »), où chaque valeur est associée à une variable (ou attribut) et à une observation. Une variable décrit l'ensemble des valeurs décrivant le même attribut et une observation contient l'ensemble des valeurs décrivant les attributs d'une unité (ou individu statistique).
Décroissance exponentiellethumb|La décharge d'un condensateur est à décroissance exponentielle. La décroissance exponentielle d'une quantité est sa diminution au fil du temps selon une loi exponentielle. On l'observe quand la dérivée par rapport au temps de cette quantité (c'est-à-dire son taux de variation instantané) est négative et proportionnelle à la quantité elle-même. Dans la langue courante on emploie souvent, mais improprement, le terme « décroissance exponentielle » pour qualifier une diminution simplement décélérée, quand la valeur absolue de la dérivée est elle-même décroissante.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Mean squared prediction errorIn statistics the mean squared prediction error (MSPE), also known as mean squared error of the predictions, of a smoothing, curve fitting, or regression procedure is the expected value of the squared prediction errors (PE), the square difference between the fitted values implied by the predictive function and the values of the (unobservable) true value g. It is an inverse measure of the explanatory power of and can be used in the process of cross-validation of an estimated model.
Astuce du noyauEn apprentissage automatique, l'astuce du noyau, ou kernel trick en anglais, est une méthode qui permet d'utiliser un classifieur linéaire pour résoudre un problème non linéaire. L'idée est de transformer l'espace de représentation des données d'entrées en un espace de plus grande dimension, où un classifieur linéaire peut être utilisé et obtenir de bonnes performances. La discrimination linéaire dans l'espace de grande dimension (appelé aussi espace de redescription) est équivalente à une discrimination non linéaire dans l'espace d'origine.
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .