Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Substance blanchethumb|Hémisphère droit d'un cerveau humain disséqué à la suite d'une coupe sagittale, révélant la substance grise dans la partie externe et la substance blanche dans la partie interne. La substance blanche est une catégorie de tissu du système nerveux central, principalement composé des axones myélinisés des neurones. Elle relie différentes aires de la substance grise où se situent les corps cellulaires des neurones. Elle constitue la partie interne du cerveau et la partie superficielle de la moelle épinière.
Substance grisethumb|Hémisphère droit d'un cerveau humain disséqué à la suite d'une coupe sagittale, révélant la substance grise dans la partie externe et la substance blanche dans la partie interne. La substance grise est la partie des tissus du système nerveux central composée essentiellement des corps cellulaires et de l'arbre dendritique des neurones ainsi que de certaines cellules gliales. Au microscope, la substance grise apparaît plus sombre que le reste du tissu nerveux, dit substance blanche, qui est essentiellement constitué des faisceaux de fibres axonales gainées de myéline, à la couleur blanchâtre.
Moelle spinaleLa moelle spinale (selon la nouvelle nomenclature), ou moelle épinière (dans l’ancienne nomenclature), désigne la partie du système nerveux central qui prolonge la moelle allongée appartenant au tronc cérébral. Elle est contenue dans le canal rachidien (canal formé par la superposition des foramens vertébraux), qui la soutient et la protège. Elle est constituée de neurones et de cellules gliales. Sa fonction principale est la transmission des messages nerveux entre le cerveau et le reste du corps.
Cerveauvignette|Cerveau d'un chimpanzé. Le cerveau est le principal organe du système nerveux des animaux bilatériens. Ce terme tient du langage courant (non scientifique) et chez les chordés, comme les humains, il peut désigner l'encéphale, ou uniquement une partie de l'encéphale, le prosencéphale (télencéphale + diencéphale), voire seulement le télencéphale. Néanmoins, dans cet article, le terme « cerveau » prend son sens le plus large. Le cerveau des chordés est situé dans la tête, protégé par le crâne chez les craniés, et son volume varie grandement d'une espèce à l'autre.
Cerveau humainLe 'cerveau humain' a la même structure générale que le cerveau des autres mammifères, mais il est celui dont la taille relative par rapport au reste du corps est devenue la plus grande au cours de l'évolution. Si la baleine bleue a le cerveau le plus lourd avec contre environ pour celui de l'homme, le coefficient d'encéphalisation humain est le plus élevé et est sept fois supérieur à celui de la moyenne des mammifères.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.