Feature (machine learning)In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a phenomenon. Choosing informative, discriminating and independent features is a crucial element of effective algorithms in pattern recognition, classification and regression. Features are usually numeric, but structural features such as strings and graphs are used in syntactic pattern recognition. The concept of "feature" is related to that of explanatory variable used in statistical techniques such as linear regression.
Structure de données persistanteEn informatique, une structure de données persistante est une structure de données qui préserve ses versions antérieures lorsqu'elle est modifiée ; une telle structure est immuable, car ses opérations ne la modifient pas en place (de manière visible) mais renvoient au contraire de nouvelles structures. Une structure est partiellement persistante si seule sa version la plus récente peut être modifiée, les autres n'étant accessibles qu'en lecture. La structure est dite totalement persistante si chacune de ses versions peut être lue ou modifiée.
Trainvignette|Un train de voyageurs en Croatie circulant sur une ligne non électrifiée. Le train est un matériel roulant ferroviaire assurant le transport de personnes ou de marchandises sur une ligne de chemin de fer. Par extension, on appelle train le service que constitue chacun de ces transports, réguliers ou non. Le train est un mode de transport, s'effectuant sur voie ferrée.
Image numériqueL'appellation d'image numérique désigne toute (dessin, icône, photographie...) acquise, créée, traitée et stockée sous forme binaire : acquise par des convertisseurs analogique-numérique situés dans des dispositifs comme les scanners, les appareils photo ou les caméscopes numériques, les cartes d’acquisition vidéo (qui numérisent directement une source comme la télévision) créée directement par des programmes informatiques, grâce à une souris, des tablettes graphiques ou par de la modélisation 3D (ce que l’on appelle, par abus de langage, les « images de synthèse ») ; traitée grâce à des outils graphiques, de façon à la transformer, à en modifier la taille, les couleurs, d’y ajouter ou d'en supprimer des éléments, d’y appliquer des filtres variés stockée sur un support informatique (clé USB, SSD, disque dur, CD-ROM.
Learning to rankLearning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. Training data consists of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item.
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Digital imagingDigital imaging or digital image acquisition is the creation of a digital representation of the visual characteristics of an object, such as a physical scene or the interior structure of an object. The term is often assumed to imply or include the , , , printing and display of such images. A key advantage of a , versus an analog image such as a film photograph, is the ability to digitally propagate copies of the original subject indefinitely without any loss of image quality.
Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Labeled dataLabeled data is a group of samples that have been tagged with one or more labels. Labeling typically takes a set of unlabeled data and augments each piece of it with informative tags. For example, a data label might indicate whether a photo contains a horse or a cow, which words were uttered in an audio recording, what type of action is being performed in a video, what the topic of a news article is, what the overall sentiment of a tweet is, or whether a dot in an X-ray is a tumor.
Text-to-image modelA text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description. Such models began to be developed in the mid-2010s, as a result of advances in deep neural networks. In 2022, the output of state of the art text-to-image models, such as OpenAI's DALL-E 2, Google Brain's , StabilityAI's Stable Diffusion, and Midjourney began to approach the quality of real photographs and human-drawn art.