Publication

Aerosol optical absorption coefficients at seven wavelengths in 10 min resolution measured in the Swiss container during MOSAiC 2019/2020

Résumé

This dataset contains aerosol optical absorption coefficients at seven different wavelengths (babs(λ)), averaged to 10 min time resolution, measured during the year-long MOSAiC expedition from October 2019 to September 2020. The measurements were performed in the Swiss container on the D-deck of Research Vessel Polarstern, using a commercial aethalometer (model AE33, Magee Scientific, Berkeley, USA). The instrument was located behind an automated valve, which switched hourly between a total and an interstitial air inlet, with upper cutoff sizes of 40 and 1 μm respectively. The inlet flow, 2 liters per minute, was verified biweekly. The dual spot technology of the instrument allowed for a real-time compensation of what is known as the loading effect (Drinovec et al., 2015). The instrument reports equivalent black carbon (eBC) mass concentrations at seven different wavelengths (370, 470, 520, 590, 660, 880, and 950 nm), computed from the measured light attenuation at each wavelength on the filter (equation (16) in Drinovec et al., 2015), with a 1 sec time resolution. The data obtained at 880 nm (channel 6: BC6) is the standard for reporting eBC concentrations (Drinovec et al., 2015), and are reported in Heutte et al. (2022). Here, we report the aerosol optical absorption coefficients at all seven wavelengths mentioned above, where the eBC (λ) concentrations were converted to optical absorption coefficients by multiplying them by the default mass absorption cross-section values of 18.47, 14.54, 13.14, 11.58, 10.35, 7.77, and 7.19 m2g-1 for the wavelengths 370, 470, 520, 590, 660, 880, and 950 nm, respectively. These optical absorption coefficients can be used for source apportionment or for the computation of the Absorption Ångström Exponent (AAE, Helin et al., 2021). The switching valve caused concentration spikes to be observed at the full hour, hence data points within ± 2 min of the full hour are removed. The dataset was averaged to 1 min time resolution (original time resolution is 1 second) to reduce the largest part of the instrument's noise, and outliers of more than 3 times the standard deviation of an hourly moving window were removed from the 1-minute averaged dataset. During some times for which the switching valve mechanism was on, varying patterns of increased mean and standard deviation of the measurements were observed, due to a pressure drop in the inlet lines. We corrected it by taking the arithmetic means of the datapoints during interstitial inlet measurements and the two adjacent hours of total inlet measurements, subtracting these two values and adding this difference to the data points of the interstitial inlet measurements. Finally, the data were averaged to 10 min time resolution. Based on a visual inspection of the entire dataset, we removed periods of strong noise and intense negative spikes. These artifacts may have emerged from the averaging of the initially noisy 1 second time resolution dataset and/or from the dual spot compensation which may lead to the presence of strong negative outliers right after a large positive outlier. Data collected between June 3rd and June 9th were discarded as Polarstern was within Svalbard's 12 nautical miles zone. The aethalometer dataset was further cleaned for disturbing pollution emissions from local research activities (e.g., exhaust by Polarstern's engine and vents, skidoos, on-ice diesel generators) using a preexisting pollution mask developed by Beck et al. (2022a), where a multi-step pollution detection algorithm was applied on the interstitial CPC dataset at 1 min time resolution (Beck et al., 2022b). This pollution mask was converted to 10 min time resolution by setting a condition where, if more than 1 data point is polluted in a 10 min moving window, the entire 10 min period is defined as polluted. The resulting flag "Flag_pollution" should be equal to 0 to retain un-polluted data points only. We thank the Laboratory for Atmospheric Chemistry at the Paul Scherrer Institute for providing the AE33 instrument.We extracted 10 min time resolution positional data from the following datasets: Rex, M (2020, doi:10.1594/PANGAEA.924669), Haas, C (2020, doi:10.1594/PANGAEA.924672), Kanzow, T (2020, doi:10.1594/PANGAEA.924678), Rex, M (2021, doi:10.1594/PANGAEA.926830) and Rex, M (2021, doi:10.1594/PANGAEA.926911).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (47)
Épaisseur optique
L’épaisseur optique ou profondeur optique est une mesure de la quantité de lumière qui est absorbée ou diffusée lorsqu'elle traverse un milieu, comme une couche d'atmosphère, un nuage, ou tout autre matériau transparent ou translucide. Elle est définie comme étant le logarithme naturel de la fraction de rayonnement électromagnétique (ou de lumière) absorbée par les composants de la couche traversée. C'est une grandeur sans dimension.
Écart type
thumb|Exemple de deux échantillons ayant la même moyenne (100) mais des écarts types différents illustrant l'écart type comme mesure de la dispersion autour de la moyenne. La population rouge a un écart type (SD = standard deviation) de 10 et la population bleue a un écart type de 50. En mathématiques, l’écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité.
Pollution sonore
thumb|Selon G. Dutilleux (2012), (ici, à titre d'exemple : vue de la circulation automobile urbaine à Bangkok, source majeure de nuisances sonores. thumb|L'échangeur de Daussoulx en Belgique ; autre exemple de source de nuisances sonores. La notion de pollution sonore regroupe généralement des nuisances sonores, et des pollutions induites par le son devenu dans certaines circonstances un « altéragène physique » pour l'être humain ou les écosystèmes.
Afficher plus
Publications associées (43)

Bulk size-resolved chemical composition and mass concentration of non-refractory submicron aerosols measured in the Swiss container during MOSAiC 2019/2020

Julia Schmale, Ivo Fabio Beck, Benjamin Jérémy Laurent Heutte, Imad El Haddad, Hélène Paule Angot, Lubna Dada

This dataset contains the bulk size-resolved chemical composition and mass concentration of non-refractory submicron aerosols (NR-PM1) measured during the MOSAiC expedition from October 2019 to July 2020. These include the mass concentrations of sulfate (S ...
EPFL Infoscience2023

Cloud Condensation Nuclei (CCN) concentrations measured in the Swiss container during MOSAiC 2019/2020

Julia Schmale, Ivo Fabio Beck, Benjamin Jérémy Laurent Heutte, Nora Bergner, Hélène Paule Angot, Lubna Dada

This dataset contains CCN concentrations at five supersaturation levels, averaged to 1 min time resolution, measured during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to Septem ...
EPFL Infoscience2023

Pollution mask for the continuous corrected particle number concentration data in 1 min time resolution measured in the Swiss aerosol container using a whole air inlet during MOSAiC 2019/2020

Julia Schmale, Andrea Baccarini, Ivo Fabio Beck, Hélène Paule Angot

This dataset contains particle number concentrations and a pollution flag in 1 min time resolution. It is derived by the pollution detection algorithm (PDA, doi:10.5281/zenodo.5761101) based on the corrected particle number concentration data of the CPC377 ...
EPFL Infoscience2023
Afficher plus
MOOCs associés (6)
Cement Chemistry and Sustainable Cementitious Materials
Learn the basics of cement chemistry and laboratory best practices for assessment of its key properties.
Systèmes d’Information Géographique 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Systèmes d’Information Géographique 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Afficher plus