Théorème d'HurewiczEn topologie algébrique, le cas le plus simple du théorème d'Hurewicz – attribué à Witold Hurewicz – est une description du premier groupe d'homologie singulière d'un espace topologique connexe par arcs à l'aide de son groupe fondamental. Le groupe fondamental, en un point x, d'un espace X, est défini comme l'ensemble des classes d'homotopie de lacets de X en x, muni de la loi de concaténation des lacets. Il est noté π(X, x).
Algèbre universelleL'algèbre universelle est la branche de l'algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de définir de manière uniforme les morphismes, les sous-structures (sous-groupes, sous-monoïdes, sous-anneaux, sous-espaces vectoriels, etc.), les quotients, les produits et les objets libres pour ces structures.
Graded (mathematics)In mathematics, the term "graded" has a number of meanings, mostly related: In abstract algebra, it refers to a family of concepts: An algebraic structure is said to be -graded for an index set if it has a gradation or grading, i.e. a decomposition into a direct sum of structures; the elements of are said to be "homogeneous of degree i ". The index set is most commonly or , and may be required to have extra structure depending on the type of . Grading by (i.e. ) is also important; see e.g. signed set (the -graded sets).