Solute-strengthening in metal alloys with short-range order
Publications associées (41)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The yield strength of random metal alloys, i.e. alloys with random occupation of the crystalline lattice sites by the elemental constituent atoms all considered as solutes, is primarily understood as controlled by solute/dislocation interactions. Solute-so ...
Under common processing conditions, both dilute and complex concentrated alloys are often realized as random alloys, with no correlation in the occupancy of lattice sites by the constituent atom types. The current thesis primary addresses two problems in r ...
The body centered cubic (BCC) high entropy alloys (HEAs) MoNbTaW and MoNbTaVW show exceptional strength retention up to 1900K. The mechanistic origin of the retained strength is unknown yet is crucial for finding the best alloys across the immense space of ...
The yield strengths of High Entropy Alloys have recently been correlated with measured or computed picometer-scale atomic distortions. Here, the root mean square microdistortion in a multicomponent alloy is shown to be nearly proportional to the misfit-vol ...
The industrial applications of Mg, the lightest structural metal, and abundant in Earth's crust, are hampered by its low intrinsic ductility and low fracture toughness at room temperature which is attributed to the underlying less symmetric and plastically ...
The mechanical properties due to solid solution strengthening are explored within the single phase face-centered cubic (fcc) domain of the Co-Cr-Fe-Mn Ni high entropy alloy (HEA) system. This is achieved by combining an efficient and reproducible metallurg ...
Strengthening, i.e. increased stress required to move a dislocation, in dilute or complex alloys arises from the totality of the interaction energies between the solutes and an individual dislocation. Prevailing theories for strengthening in bcc alloys con ...
IMPACT STATEMENT Experiments and theory are highlighting chemical ordering in high-entropy alloys (HEAs) as important for mechanical properties but the high strength in CoCrFeNiPd is predicted here to be achievable in the random alloy due to the large misf ...
Dislocation motion through a random alloy is impeded by its interactions with the compositional fluctuations intrinsic to the alloy, leading to strengthening. A recent theory predicts the strengthening as a function of the solute-dislocation interaction en ...
High-entropy alloys are random alloys with five or more components, often near equi-composition, that often exhibit excellent mechanical properties. Guiding the design of new materials across the wide composition space requires an ability to compute necess ...