Graphe de connaissancesDans le domaine de la représentation des connaissances, un graphe de connaissances (knowledge graph en anglais) est une base de connaissance modélisant les données sous forme de représentation graphique. Depuis le développement du web sémantique, les graphes de connaissances sont souvent associés aux projets de données ouvertes du web des données, visant surtout à connecter les concepts et entités. Ils sont fortement liés aux et utilisés par les moteurs de recherches, dont certains, tels Google, ont développé leur propre graphe de connaissances.
Knowledge representation and reasoningKnowledge representation and reasoning (KRR, KR&R, KR2) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build.
Liste de concepts logiquesCet article liste les principaux concepts logiques, au sens philosophique du terme, c'est-à-dire en logique générale (issue de la dialectique). Nota : La logique comporte aussi des branches en mathématiques et en informatique. Ces branches de la logique utilisent des concepts souvent différents comme les prédicats : axiome, théorème hypothèse, conjonction, disjonction, Déduction naturelle... Pour plus d'informations sur ces concepts consulter les articles : Logique mathématique, logique classique.
Models of neural computationModels of neural computation are attempts to elucidate, in an abstract and mathematical fashion, the core principles that underlie information processing in biological nervous systems, or functional components thereof. This article aims to provide an overview of the most definitive models of neuro-biological computation as well as the tools commonly used to construct and analyze them.
Raisonnement à partir de casLe raisonnement à partir de cas (RàPC) (nommé en anglais case-based reasoning (CBR)) est un type de raisonnement qui copie le comportement humain qui consiste à faire naturellement appel à l'expérience pour résoudre les problèmes de la vie quotidienne, en se remémorant les situations semblables déjà rencontrées et en les comparant à la situation actuelle pour construire une nouvelle solution qui, à son tour, s’ajoutera à l'expérience. Ce type de raisonnement résout les problèmes en retrouvant des cas analogues dans sa base de connaissances et en les adaptant au cas considéré.
Intelligence humainevignette|Femmes passant un test d'intelligence générale (Allemagne, 1931). L'intelligence humaine est caractérisée par plusieurs aptitudes, surtout cognitives, qui permettent à l'individu humain d'apprendre, de former des concepts, de comprendre, d'appliquer la logique et la raison. Elle comprend la capacité à reconnaître des tendances, comprendre les idées, planifier, résoudre des problèmes, prendre des décisions, conserver des informations, et utiliser la langue pour communiquer.
Reconnaissance d'entités nomméesLa reconnaissance d'entités nommées est une sous-tâche de l'activité d'extraction d'information dans des corpus documentaires. Elle consiste à rechercher des objets textuels (c'est-à-dire un mot, ou un groupe de mots) catégorisables dans des classes telles que noms de personnes, noms d'organisations ou d'entreprises, noms de lieux, quantités, distances, valeurs, dates, etc. À titre d'exemple, on pourrait donner le texte qui suit, étiqueté par un système de reconnaissance d'entités nommées utilisé lors de la campagne d'évaluation MUC: Henri a acheté 300 actions de la société AMD en 2006 Henri a acheté 300 actions de la société AMD en 2006.
Symbolic artificial intelligenceIn artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems (in particular, expert systems), symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems.
Agent intelligentEn intelligence artificielle, un agent intelligent (AI) est une entité autonome capable de percevoir son environnement grâce à des capteurs et aussi d'agir sur celui-ci via des effecteurs afin de réaliser des objectifs. Un agent intelligent peut également apprendre ou utiliser des connaissances pour pouvoir réaliser ses objectifs. Ils peuvent être simples ou complexes. Par exemple, un simple système réactif, comme le thermostat est considéré comme étant un agent intelligent.
Base de connaissanceUne base de connaissance ou base de connaissances regroupe des connaissances spécifiques à un domaine spécialisé donné, sous une forme exploitable par un ordinateur. Elle peut contenir des règles (dans ce cas, on parle de base de règles), des faits ou d'autres représentations. Si elle contient des règles, un moteur d'inférence peut être utilisé pour déduire de nouveaux faits. Une autre manière de définir une base de connaissance est de dire qu'il s'agit d'une ontologie peuplée par des individus.