Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Traitement automatique du langage naturelLe traitement automatique du langage naturel (TALN), en anglais natural language processing ou NLP, est un domaine multidisciplinaire impliquant la linguistique, l'informatique et l'intelligence artificielle, qui vise à créer des outils de traitement du langage naturel pour diverses applications. Il ne doit pas être confondu avec la linguistique informatique, qui vise à comprendre les langues au moyen d'outils informatiques.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Transformeur génératif pré-entraînédroite|vignette| Architecture du modèle GPT Le transformeur génératif pré-entraîné (ou GPT, de l’anglais generative pre-trained transformer) est une famille de modèles de langage généralement formée sur un grand corpus de données textuelles pour générer un texte de type humain. Il est construit en utilisant plusieurs blocs de l'architecture du transformeur. Ils peuvent être affinés pour diverses tâches de traitement du langage naturel telles que la génération de texte, la traduction de langue et la classification de texte.
Annotation sémantiqueL'annotation sémantique est l'opération consistant à relier le contenu d'un texte à des entités dans une ontologie. Par exemple, pour la phrase «Paris est la capitale de la France.», l'annotation correcte de Paris serait Paris et non Paris Hilton. L'annotation sémantique est une variante plus détaillée mais moins exacte de la méthode des entitiés nommées, car ces dernières décrivent seulement la catégorie de l'entité (Paris est une ville, sans la relier à la bonne page Wikipédia).
Raisonnement déductifEn logique, la déduction est une inférence menant d'une affirmation générale à une conclusion particulière. La déduction est une opération par laquelle on établit au moyen de prémisses une conclusion qui en est la conséquence nécessaire, en vertu de règles d'inférence logiques. Ces règles sont notamment l'objet des Premiers Analytiques d'Aristote. On l'oppose généralement à l'induction, qui consiste au contraire à extraire d'un nombre fini de propositions données par l'observation, une conclusion ou un petit nombre de conclusions plus générales.
Induction (logique)L'induction est historiquement le nom utilisé pour signifier un genre de raisonnement qui se propose de chercher des lois générales à partir de l'observation de faits particuliers, sur une base probabiliste. Remarque : Bien qu'associée dans le titre de cet article à la logique, la présentation qui suit correspond surtout à la notion bayésienne, utilisée consciemment ou non, de l'induction.
Compréhension du langage naturelvignette|L'apprentissage de la lecture par Sigurður málari, siècle. La compréhension du langage naturel (NLU en anglais) ou linterprétation en langage naturel (NLI) est une sous-rubrique du traitement de la langue naturelle en intelligence artificielle qui traite de la compréhension en lecture automatique. La compréhension du langage naturel est considérée comme un problème difficile en IA. Il existe un intérêt commercial considérable dans ce domaine en raison de son application à la collecte de nouvelles, à la catégorisation des textes, à l'activation vocale, à l'archivage et à l'analyse de contenu à grande échelle.
Intelligence artificielle généralevignette|Image générée en juin 2022 par le modèle de génération d'images DALL-E-mini, à partir de la consigne « Intelligence artificielle ». Une intelligence artificielle générale (IAG) est une intelligence artificielle capable d'effectuer ou d'apprendre pratiquement n'importe quelle tâche cognitive propre aux humains ou autres animaux. La création d'intelligences artificielles générales est un des principaux objectifs de certaines entreprises comme OpenAI, DeepMind et Anthropic.
Physical neural networkA physical neural network is a type of artificial neural network in which an electrically adjustable material is used to emulate the function of a neural synapse or a higher-order (dendritic) neuron model. "Physical" neural network is used to emphasize the reliance on physical hardware used to emulate neurons as opposed to software-based approaches. More generally the term is applicable to other artificial neural networks in which a memristor or other electrically adjustable resistance material is used to emulate a neural synapse.