Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper considers two pertinent research inquiries: 'Can an AI-based predictive framework be utilised for the optimisation of solar energy management?' and 'What are the ways in which the AI-based predictive framework can be integrated within the Smart Grid infrastructure to improve grid reliability and efficiency?' The study deploys a Deep Learning model based on Long Short-Term Memory techniques, leading to refined accuracy in solar electricity generation forecasts. Such an AI-supported methodology aids power grid operators in comprehensive planning, thereby ensuring a robust electricity supply. The effectiveness of this framework is tested using performance metrics such as MAE, RMSE, nMAE, nRMSE, and R-2. A persistent model is utilised as a reference for comparison. Despite a slight decrease in predictive precision with the expansion of the forecast horizon, the proposed AI-based framework consistently surpasses the persistent model, particularly for horizons beyond two hours. Therefore, this research underscores the potential of AI-based prediction in fostering efficient solar energy management and enhancing Smart Grid reliability and efficiency.
,