Recherche automatique d'architecture neuronaleLa recherche automatique d'architecture neuronale (Neural Architecture Search, NAS) est un ensemble de techniques visant à découvrir automatiquement de nouveaux modèles de réseaux de neurones artificiels. Les principales méthodes employées dans la littérature sont basées soit sur de l'apprentissage par renforcement, sur de la descente de gradient ou bien sur des algorithmes génétiques. Plusieurs méthodes NAS parviennent à obtenir des architectures qui atteignent ou surpassent les performances des modèles créés à la main.
TensorFlowTensorFlow est un outil open source d'apprentissage automatique développé par Google. Le code source a été ouvert le par Google et publié sous licence Apache. Il est fondé sur l'infrastructure DistBelief, initiée par Google en 2011, et est doté d'une interface pour Python, Julia et R TensorFlow est l'un des outils les plus utilisés en IA dans le domaine de l'apprentissage machine. À partir de 2011, Google Brain a développé un outil propriétaire d'apprentissage automatique fondé sur l'apprentissage profond.
Fonction softmaxvignette|Fonction softmax utilisée après un CNN (Réseau neuronal convolutif). Ici le vecteur (35.4, 38.1, -5.0) est transformée en (0.06, 0.94, 0.00). Dans ce contexte de classification d'images, le chien est reconnu. En mathématiques, la fonction softmax, aussi appelée fonction softargmax ou fonction exponentielle normalisée, est une généralisation de la fonction logistique. Elle convertit un vecteur de K nombres réels en une distribution de probabilités sur K choix.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).
Apprentissage auto-superviséL'apprentissage auto-supervisé ("self-supervised learning" en anglais) (SSL) est une méthode d'apprentissage automatique. Il apprend à partir d'échantillons de données non étiquetés. Il peut être considéré comme une forme intermédiaire entre l'apprentissage supervisé et non supervisé. Il est basé sur un réseau de neurones artificiels. Le réseau de neurones apprend en deux étapes. Tout d'abord, la tâche est résolue sur la base de pseudo-étiquettes qui aident à initialiser les poids du réseau.
Rétropropagation du gradientEn intelligence artificielle, plus précisément en apprentissage automatique, la rétropropagation du gradient est une méthode pour entraîner un réseau de neurones. Elle consiste à mettre à jour les poids de chaque neurone de la dernière couche vers la première. Elle vise à corriger les erreurs selon l'importance de la contribution de chaque élément à celles-ci. Dans le cas des réseaux de neurones, les poids synaptiques qui contribuent plus à une erreur seront modifiés de manière plus importante que les poids qui provoquent une erreur marginale.
Polynôme symétriqueEn mathématiques, un polynôme symétrique est un polynôme en plusieurs indéterminées, invariant par permutation de ses indéterminées. Ils jouent notamment un rôle dans les relations entre coefficients et racines. Soit A un anneau commutatif unitaire. Un polynôme Q(T, ..., T) en n indéterminées à coefficients dans A est dit symétrique si pour toute permutation s de l'ensemble d'indices {1, ..., n}, l'égalité suivante est vérifiée : Exemples Pour n = 1, tout polynôme est symétrique.
Highway networkIn machine learning, the Highway Network was the first working very deep feedforward neural network with hundreds of layers, much deeper than previous artificial neural networks. It uses skip connections modulated by learned gating mechanisms to regulate information flow, inspired by Long Short-Term Memory (LSTM) recurrent neural networks. The advantage of a Highway Network over the common deep neural networks is that it solves or partially prevents the vanishing gradient problem, thus leading to easier to optimize neural networks.
Elastic net regularizationIn statistics and, in particular, in the fitting of linear or logistic regression models, the elastic net is a regularized regression method that linearly combines the L1 and L2 penalties of the lasso and ridge methods. The elastic net method overcomes the limitations of the LASSO (least absolute shrinkage and selection operator) method which uses a penalty function based on Use of this penalty function has several limitations. For example, in the "large p, small n" case (high-dimensional data with few examples), the LASSO selects at most n variables before it saturates.
Ridge regressionRidge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.