Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The quality of automatic transcription of heritage documents, whether from printed, manuscripts or audio sources, has a decisive impact on the ability to search and process historical texts. Although significant progress has been made in text recognition (OCR, HTR, ASR), textual materials derived from library and archive collections remain largely erroneous and noisy. Effective post-transcription correction methods are therefore necessary and have been intensively researched for many years. As large language models (LLMs) have recently shown exceptional performances in a variety of text-related tasks, we investigate their ability to amend poor historical transcriptions. We evaluate fourteen foundation language models against various post-correction benchmarks comprising different languages, time periods and document types, as well as different transcription quality and origins. We compare the performance of different model sizes and different prompts of increasing complexity in zero and few-shot settings. Our evaluation shows that LLMs are anything but efficient at this task. Quantitative and qualitative analyses of results allow us to share valuable insights for future work on post-correcting historical texts with LLMs.
Maud Ehrmann, Matteo Romanello
Lucas Arnaud André Rappo, Rémi Guillaume Petitpierre, Marion Kramer
Maud Ehrmann, Matteo Romanello