Protein function predictionProtein function prediction methods are techniques that bioinformatics researchers use to assign biological or biochemical roles to proteins. These proteins are usually ones that are poorly studied or predicted based on genomic sequence data. These predictions are often driven by data-intensive computational procedures. Information may come from nucleic acid sequence homology, gene expression profiles, protein domain structures, text mining of publications, phylogenetic profiles, phenotypic profiles, and protein-protein interaction.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Amarrage (moléculaire)vignette|Petite molécule amarrée à une protéine. Dans le domaine de la modélisation moléculaire, l’amarrage (en anglais docking) est une méthode qui calcule l'orientation préférée d'une molécule vers une seconde lorsqu'elles sont liées pour former un complexe stable. Connaître l'orientation préférée sert à prévoir la solidité de l'union entre deux molécules. Les associations entre des molécules d'importance biologique, telles que les protéines, les acides nucléiques, les glucides et les matières grasses jouent un rôle essentiel dans la transduction de signal.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Relation quantitative structure à activitéUne relation quantitative structure à activité (en anglais : Quantitative structure-activity relationship ou QSAR, parfois désignée sous le nom de relation quantitative structure à propriété - en anglais : quantitative structure-property relationship ou QSPR) est le procédé par lequel une structure chimique est corrélée avec un effet bien déterminé comme l'activité biologique ou la réactivité chimique. Ainsi, l'activité biologique peut être exprimée de manière quantitative, comme pour la concentration de substance nécessaire pour obtenir une certaine réponse biologique.
Fragment-based lead discoveryFragment-based lead discovery (FBLD) also known as fragment-based drug discovery (FBDD) is a method used for finding lead compounds as part of the drug discovery process. Fragments are small organic molecules which are small in size and low in molecular weight. It is based on identifying small chemical fragments, which may bind only weakly to the biological target, and then growing them or combining them to produce a lead with a higher affinity. FBLD can be compared with high-throughput screening (HTS).
Chimie numériqueLa chimie numérique ou chimie informatique, parfois aussi chimie computationnelle, est une branche de la chimie et de la physico-chimie qui utilise les lois de la chimie théorique exploitées dans des programmes informatiques spécifiques afin de calculer structures et propriétés d'objets chimiques tels que les molécules, les solides, les agrégats atomiques (ou clusters), les surfaces, etc., en appliquant autant que possible ces programmes à des problèmes chimiques réels.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Classical pharmacologyIn the field of drug discovery, classical pharmacology, also known as forward pharmacology, or phenotypic drug discovery (PDD), relies on phenotypic screening (screening in intact cells or whole organisms) of chemical libraries of synthetic small molecules, natural products or extracts to identify substances that have a desirable therapeutic effect. Using the techniques of medicinal chemistry, the potency, selectivity, and other properties of these screening hits are optimized to produce candidate drugs.
Bio-informatiqueLa bioinformatique (ou bio-informatique), est un champ de recherche multidisciplinaire de la biotechnologie où travaillent de concert biologistes, médecins, informaticiens, mathématiciens, physiciens et bioinformaticiens, dans le but de résoudre un problème scientifique posé par la biologie. Plus généralement, la bio-informatique est l'application de la statistique et de l'informatique à la science biologique. Le spécialiste qui travaille à mi-chemin entre ces sciences et l'informatique est appelé bioinformaticien ou bionaute.