Immediate effect of ankle exoskeleton on spatiotemporal parameters and center of pressure trajectory after stroke
Publications associées (33)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Locomotion is based on a sophisticated interaction among the environment, the musculoskeletal system, the spinal cord, and the brain locomotor areas. Quality of life is strongly related to the proper capability of this movement. However, many pathologies, ...
Like 17 million people worldwide, an individual with cerebral palsy (CP) does not have the opportunity to walk harmoniously in society due to long-life impairments in movement and posture. The natural course of CP can be modulated by treatments and therapi ...
EPFL2020
, ,
This article presents a control algorithm framework with which a bipedal robot can perform a variety of gaits by only modifying a small set of control parameters. The controller drives a number of variables, called non-emergent variables, to their desired ...
2019
Quantification of mobility is the key to monitor the progression of mobility disorders as well as the effect of an intervention. Inertial measurement units (IMUs) with dedicated algorithms can quantify postural transitions and gait as the two key aspects o ...
EPFL2021
, , ,
The growing demand for online gait phase (GP) estimation, driven by advancements in exoskeletons and prostheses, has prompted numerous approaches in the literature. Some approaches explicitly use time, while others rely on state variables to estimate the G ...
The central nervous system of humans and other animals modulates spinal cord activity to achieve several locomotion behaviors. Previous neuromechanical models investigated the modulation of human gait changing selected parameters belonging to CPGs (Central ...
Powered exoskeletons are among the emerging technologies claiming to assist functional ambulation. The potential to adapt robotic assistance based on specific motor abilities of incomplete spinal cord injury (iSCI) subjects, is crucial to optimize Human-Ro ...
Background Gait training with partial body weight support (BWS) has become an established rehabilitation technique. Besides passive unloading mechanisms such as springs or counterweights, also active systems that allow rendering constant or modulated verti ...
Background: Damage to the cerebellum can affect neural structures involved in locomotion, causing gait and balance disorders. However, the integrity of cerebellum does not seem to be critical in managing sudden and unexpected environmental changes such as ...
Human walking speeds can be influenced by multiple factors, from energetic considerations to the time to reach a destination. Neurological deficits or lower-limb injuries can lead to slower walking speeds, and the recovery of able-bodied gait speed and beh ...