Why five decades of massive research on heterogeneous photocatalysis, especially on TiO2, has not yet driven to water disinfection and detoxification applications? Critical review of drawbacks and challenges
Publications associées (148)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Chemical oxidants including ozone (O3), chlorine (HOCl/OCl-) and chlorine dioxide (ClO2) are applied for disinfection of drinking water. To cope with water scarcity and the increased risks associated with the presence of micropollutants, water treatment sy ...
This publication summarizes my journey in the field of chemical oxidation processes for water treatment over the last 30+ years. Initially, the efficiency of the application of chemical oxidants for micropollutant abatement was assessed by the abatement of ...
Chemical oxidation has been applied in municipal water treatment for more than a century, initially for disinfection. In the early decades, chlorine disinfection was adopted in the fight against waterborne disease. However, the oxidative properties of chlo ...
Human viruses are widespread in the water environment and pose a risk to human health. Wastewater effluents represent the main source of viruses discharge in the environment, leading to contamination of aquatic ecosystems. Viral pathogens can persist on th ...
Chlorine disinfection is commonly applied to inactivate pathogenic viruses in drinking water treatment plants. However, the role of water quality in chlorine disinfection of viruses has not been investigated thoughtfully. In this study, we investigated the ...
Water quality and its impacts on human and ecosystem health presents tremendous global challenges. While oxidative water treatment can solve many of these problems related to hygiene and micropollutants, identifying and predicting transformation products f ...
Oxidative treatment of seawater in coastal and shipboard installations is applied to control biofouling and/or minimize the input of noxious or invasive species into the marine environment. This treatment allows a safe and efficient operation of industrial ...
Iodine is a naturally-occurring halogen in natural waters generally present in concentrations between 0.5 and 100 mu g L-1. During oxidative drinking water treatment, iodine-containing disinfection by-products (I-DBPs) can be formed. The formation of I-DBP ...
Water contamination due to environmental conditions and poor waste management in certain areas of the world represents a serious problem in accessing clean and safe drinking water. This problem is especially critical in electricity-poor regions, where adva ...
Formation of N-Nitrosamines in water and wastewater treatment is of concern due to their high carcinogenic potency, e.g., N-nitrosodimethylamine (NDMA) is estimated to be several hundred times more potent than the regulated trihalomethanes in drinking wate ...