Let's move forward: Image-computable models and a common model evaluation scheme are prerequisites for a scientific understanding of human vision
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Human vision has evolved to make sense of a world in which elements almost never appear in isolation. Surprisingly, the recognition of an element in a visual scene is strongly limited by the presence of other nearby elements, a phenomenon known as visual c ...
EPFL2021
, , , , ,
Neural networks are highly effective tools for pose estimation. However, as in other computer vision tasks, robustness to out-of-domain data remains a challenge, especially for small training sets that are common for real-world applications. Here, we probe ...
The adoption of Transformer-based models in natural language processing (NLP) has led to great success using a massive number of parameters. However, due to deployment constraints in edge devices, there has been a rising interest in the compression of thes ...
ASSOC COMPUTATIONAL LINGUISTICS-ACL2021
, , ,
Image classification has significantly improved using deep learning. This is mainly due to convolutional neural networks (CNNs) that are capable of learning rich feature extractors from large datasets. However, most deep learning classification methods are ...
2021
Over the past few years, there have been fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. The amount of annotated data drastically increased and supervised deep discriminative models exceed ...
In crowding, perception of a target deteriorates in the presence of nearby flankers. Traditionally, it is thought that visual crowding obeys Bouma's law, i.e., all elements within a certain distance interfere with the target, and that adding more elements ...
Stereo matching aims to perceive the 3D geometric configuration of scenes and facilitates a variety of computer vision in advanced driver assistance systems (ADAS) applications. Recently, deep convolutional neural networks (CNNs) have shown dramatic perfor ...
Feedforward Convolutional Neural Networks (ffCNNs) have become state-of-the-art models both in computer vision and neuroscience. However, human-like performance of ffCNNs does not necessarily imply human-like computations. Previous studies have suggested t ...
Classically, vision is seen as a cascade of local, feedforward computations. This framework has been tremendously successful, inspiring a wide range of ground-breaking findings in neuroscience and computer vision. Recently, feedforward Convolutional Neural ...
While several research studies have focused on analyzing human behavior and, in particular, emotional signals from visual data, the problem of synthesizing face video sequences with specific attributes (e.g. age, facial expressions) received much less atte ...