Problème de l'arrêtvignette|L'animation illustre une machine impossible : il n'y a pas de machine qui lit n'importe quel code source d'un programme et dit si son exécution termine ou non. En théorie de la calculabilité, le problème de l'arrêt est le problème de décision qui détermine, à partir d'une description d'un programme informatique, et d'une entrée, si le programme s'arrête avec cette entrée ou non.
LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Degré de TuringEn informatique et en logique mathématique, le degré de Turing (nommé d'après Alan Turing) ou le degré d'insolubilité d'un ensemble d'entiers naturels mesure le niveau d'insolubilité algorithmique de l'ensemble. Le concept de degré de Turing est fondamental dans la théorie de la calculabilité, où des ensembles d'entiers naturels sont souvent considérés comme des problèmes de décision. Le degré de Turing d'un ensemble révèle combien il est difficile de résoudre le problème de décision associé à cet ensemble, à savoir, déterminer si un nombre arbitraire est dans l'ensemble donné.
Philosophie de la logiqueLa philosophie de la logique est une partie de la philosophie des sciences qui s'intéresse à l’ensemble des problèmes théoriques qui relèvent traditionnellement de la logique, comportant essentiellement la question de son essence, son histoire depuis son origine aristotélicienne et à l'intérieur de la question philosophique, de l'extension de son domaine et de ses limites, aux côtés de la philosophie du langage, de la philosophie des sciences, du psychologisme et des mathématiques.
Dialectica interpretationIn proof theory, the Dialectica interpretation is a proof interpretation of intuitionistic logic (Heyting arithmetic) into a finite type extension of primitive recursive arithmetic, the so-called System T. It was developed by Kurt Gödel to provide a consistency proof of arithmetic. The name of the interpretation comes from the journal Dialectica, where Gödel's paper was published in a 1958 special issue dedicated to Paul Bernays on his 70th birthday.