Connaissance tacitevignette|Le sergent d'état-major. Anette Aldridge de West Jordan, Utah, une linguiste française servant avec la compagnie C, 142e bataillon de renseignement militaire, Les connaissances tacites regroupent les compétences innées ou acquises, le savoir-faire et l'expérience. Elles sont généralement difficiles à « formaliser » par opposition aux connaissances explicites. Dans une entreprise, la connaissance tacite peut s'assimiler au capital intellectuel. C'est un actif intangible.
Cauchy boundary conditionIn mathematics, a Cauchy (koʃi) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.
Initial value problemIn multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to solving an initial value problem. In that context, the differential initial value is an equation which specifies how the system evolves with time given the initial conditions of the problem.
Invariant measureIn mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, and a difference of slopes is invariant under shear mapping. Ergodic theory is the study of invariant measures in dynamical systems. The Krylov–Bogolyubov theorem proves the existence of invariant measures under certain conditions on the function and space under consideration.
Bruit thermiqueLe bruit thermique, également nommé bruit de résistance, bruit Johnson ou bruit de Johnson-Nyquist, est le bruit généré par l'agitation thermique des porteurs de charges, c'est-à-dire des électrons dans une résistance électrique en équilibre thermique. Ce phénomène a lieu indépendamment de toute tension appliquée. Le bruit thermique aux bornes d'une résistance est exprimée par la relation de Nyquist : où est la variance de la tension aux bornes de la résistance, est la constante de Boltzmann, qui vaut kB = 1,3806 × 10-23 J.
Contrôle du bruitalt=|vignette| Sonomètre Le contrôle du bruit, sa gestion ou atténuation, sont les efforts déployés, en tout domaine, pour diminuer la pollution sonore et limiter l'impact du bruit, tant à l'extérieur qu'à l'intérieur des bâtiments et autres structures habitées. Parmi les principaux domaines concernés par le contrôle, d'atténuation ou de réduction du bruit figurent : le contrôle du bruit des transports (trafic routier, ferroviaire, aérien, des navires dans les ports, etc), la conception architecturale et l'urbanisme (via notamment des codes de zonage) ou encore le contrôle du bruit au travail.
Bruit numériqueDans une , on appelle bruit numérique toute fluctuation parasite ou dégradation que subit l'image de l'instant de son acquisition jusqu'à son enregistrement. Le bruit numérique est une notion générale à tout type d'image numérique, et ce quel que soit le type du capteur à l'origine de son acquisition (appareil photo numérique, scanner, caméra thermique...etc). Les sources de bruit numérique sont multiples, certaines sont physiques liées à la qualité de l’éclairage, de la scène, la température du capteur, la stabilité du capteur de l'image durant l'acquisition, d'autres apparaissent durant la numérisation de l'information.
Équation différentielle linéaireUne équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.
Croissance exponentiellethumb|Comparaison entre une croissance linéaire (en rouge), cubique (en bleu) et exponentielle (en vert) |300x300px La croissance exponentielle d'une quantité est son augmentation au fil du temps selon une loi exponentielle. On l'observe quand la dérivée par rapport au temps de cette quantité (c'est-à-dire son taux de variation instantané) est positive et proportionnelle à la quantité elle-même. Dans la langue courante on emploie souvent, mais improprement, le terme « croissance exponentielle » pour qualifier une augmentation simplement accélérée, quand la dérivée est elle-même croissante.
Fonction exponentielle doubleUne fonction exponentielle double est une fonction exponentielle dont l’exposant est lui-même une fonction exponentielle. La forme générale est : Cette fonction croît plus vite qu’une exponentielle simple. Par exemple, pour a = b = 10 : f(−1) ≈ ; f(0) = 10 ; f(1) = 1010 ; f(2) = 10100 = googol ; f(3) = 101000 ; f(100) = 1010100 = googolplex. Les factorielles croissent plus vite que les exponentielles, mais beaucoup plus lentement que les exponentielles doubles. La fonction hyper-exponentielle et la fonction d'Ackermann croissent encore plus vite.