Une équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions. Une équation différentielle linéaire scalaire se présente comme une relation entre une ou plusieurs fonctions inconnues et leurs dérivées, de la forme où a, a, ... a, b sont des fonctions numériques continues. Une équation différentielle linéaire vectorielle aura le même aspect, en remplaçant les a par des applications linéaires (ou souvent des matrices) fonctions de x et b par une fonction de x à valeurs vectorielles. Une telle équation sera parfois aussi appelée système différentiel linéaire. L'ordre de l'équation différentielle correspond au degré maximal de différentiation auquel une des fonctions inconnues y a été soumise, n dans l'exemple précédent. Il existe des méthodes générales de résolution pour les équations différentielles linéaires scalaires d'ordre 1 à coefficients variables ou d'ordre n à coefficients constants. Celle-ci s'écrit, sous sa forme la plus générale : où a, a, ... a, b sont des fonctions continues sur I un intervalle réel, à valeurs réelles ou complexes. Cette équation, appelée aussi équation sans second membre, s'écrit : Si l'on dispose de n « intégrales » (i.e. : solutions) particulières linéairement indépendantes : en multipliant chaque équation respectivement par les constantes C, ..., C, la fonction qui dépend de n constantes arbitraires satisfait l'équation : c'est l'intégrale générale de celle-ci. Si, à cette fonction dépendant de n constantes arbitraires, est ajoutée une intégrale particulière de l'équation complète, la somme des deux satisfait l'équation complète : c'est l'intégrale générale de l'équation non homogène.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (51)
MATH-106(c): Analysis II
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
MATH-301: Ordinary differential equations
Ce cours donne une introduction rigoureuse au principaux thèmes de la théorie des équations différentielles ordinaires (EDO). Les EDO sont fondamentales pour l'étude des systèmes dynamiques et des équ
MATH-106(e): Analysis II
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
Afficher plus
Séances de cours associées (748)
Deuxième ordre Équations différentielles inhomogènes
Couvre la solution d'équations différentielles de second ordre inhomogènes en utilisant des coefficients indéterminés et le principe de superposition.
Équations différentielles linéaires
Couvre les équations différentielles linéaires de l'ordre n avec des coefficients constants et comment trouver leurs solutions générales.
ODEs linéaires de deuxième ordre
Couvre la solution des ODE linéaires de second ordre avec des coefficients constants et explore la méthode de variation des paramètres.
Afficher plus
Publications associées (416)

Analytical Model of Single-Sided Linear Induction Motors for High-Speed Applications

André Hodder, Lucien André Félicien Pierrejean, Simone Rametti

This article describes a field-based analytical model of single-sided linear induction motors (SLIMs) that explicitly considers the following effects altogether: finite motor length, magnetomotive force mmf space harmonics, slot effect, edge effect, and ta ...
2024

SPACE-TIME REDUCED BASIS METHODS FOR PARAMETRIZED UNSTEADY STOKES EQUATIONS

Simone Deparis, Riccardo Tenderini, Nicholas Mueller

In this work, we analyze space-time reduced basis methods for the efficient numerical simulation of haemodynamics in arteries. The classical formulation of the reduced basis (RB) method features dimensionality reduction in space, while finite difference sc ...
Philadelphia2024

Stable cones in the thin one-phase problem

Xavier Fernandez-Real Girona

The aim of this work is to study homogeneous stable solutions to the thin (or fractional) one -phase free boundary problem. The problem of classifying stable (or minimal) homogeneous solutions in dimensions n >= 3 is completely open. In this context, axial ...
Johns Hopkins Univ Press2024
Afficher plus
Concepts associés (27)
Équation différentielle ordinaire
En mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Équation différentielle
En mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Wronskien
En analyse mathématique, le wronskien, nommé ainsi en l'honneur de Josef Hoëné-Wronski, est le déterminant d'une famille de solutions d'un système différentiel linéaire homogène y' = ay. À l'aide du wronskien, il est possible de déterminer si cette famille constitue une base de l'espace des solutions. En outre, même sans aucune information sur les solutions, l'équation d'évolution du wronskien est connue. Ceci donne une information quantitative précieuse et offre même une stratégie de résolution pour certaines équations différentielles.
Afficher plus
MOOCs associés (22)
Warm-up for EPFL
Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.