Publication

Origin of the enhanced pseudo-elasticity of additively manufactured Fe-17Mn-5Si-4Ni-10Cr-(V, C) shape memory alloy fabricated by laser powder bed fusion

Résumé

This study investigated the origin of the enhanced pseudo-elasticity of additively manufactured vanadium carbide-containing Fe-based shape memory alloys. The aged samples with two different starting microstructures, as-built and solution-treated, showed completely different final microstructures following identical aging treatments. The sample aged directly from the as-built microstructure exhibited typical solidification structures, molten pools, and cellular structures with fine grain sizes inherited from the laser powder bed fusion process with a high cooling rate. In contrast, the sample aged following solution treatment revealed fully recrystallized grain structures with relatively larger grain sizes than the former. Despite having the same type of carbides, the directly aged sample had finer and denser precipitates than the sample aged following solution treatment. Additionally, compared to the sample aged following solution treatment, the directly aged sample exhibited a larger pseudoelastic recovery strain. The precipitation behavior may have had a negligible impact on the pseudo-elastic behavior because the increase in the pseudo-elastic recovery strain following aging treatment was not significant for either sample. Besides, thermodynamic calculations predicted that the stability of the face-centered cubic (fcc)-gamma phase would be increased by local elemental segregation at cell boundaries. Cell boundaries with high fcc-gamma phase stability can act as sites that can apply back stress on the deformation-induced hcp-epsilon phase, thus promoting reverse motion of the Shockley partial dislocations or deformation-induced hcp-epsilon phase. Furthermore, the smaller grain size enhanced the stability of the fcc-gamma phase.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Superalliage
Un superalliage ou alliage à haute performance est un alliage métallique présentant une excellente résistance mécanique et une bonne résistance au fluage à haute température (typiquement sa température de fusion), une bonne stabilité surfacique ainsi qu'une bonne résistance à la corrosion et à l'oxydation. Les superalliages présentent typiquement une structure cristalline cubique à faces centrées de type austénitique. Les éléments d'alliages à la base d'un superalliage sont le plus souvent le nickel, le cobalt et le fer, mais aussi le titane et l'aluminium.
Allotropes of iron
At atmospheric pressure, three allotropic forms of iron exist, depending on temperature: alpha iron (α-Fe, ferrite), gamma iron (γ-Fe, austenite), and delta iron (δ-Fe). At very high pressure, a fourth form exists, epsilon iron (ε-Fe, hexaferrum). Some controversial experimental evidence suggests the existence of a fifth high-pressure form that is stable at very high pressures and temperatures. The phases of iron at atmospheric pressure are important because of the differences in solubility of carbon, forming different types of steel.
Austénite
L'austénite est une solution solide de carbone dans l'allotrope γ du fer, qui est stable entre 911 et à la pression atmosphérique. Cet allotrope a une structure cristallographique cubique à faces centrées, notation Strukturbericht A1, qui permet une grande solubilité du carbone (jusque 2,1 % massique à ). Le fer γ est paramagnétique (on entend par là qu'il quitte le domaine de ferromagnétisme du fer à basse température – T < Tc = – et entre dans le domaine paramagnétique). vignette|Austénite.
Afficher plus
Publications associées (47)

Laser powder bed fusion of Fe-based shape memory alloys for novel structural metamaterials and "smart" structures

Irene Ferretto

Laser powder bed fusion (LPBF) is a powder-based additive manufacturing (AM) technique, which shows great potential in the production of complex-shaped parts with unprecedented design freedom. In addition, it allows for an active manipulation of the micros ...
EPFL2023

Effect of post-heat treatment conditions on shape memory property in 4D printed Fe-17Mn-5Si-10Cr-4Ni shape memory alloy

Christian Leinenbach, Irene Ferretto

The influence of post-heat treatment on the microstructure and properties of 4D printed Fe-17Mn-5Si-10Cr-4Ni (wt. %) shape memory alloy (SMA) produced via a laser powder bed fusion process is investigated in this study. It is shown that heat-treatment temp ...
2022

Development of High-Strength Aluminum Alloys for Additive Manufacturing

Marvin Lennard Schuster

Metal additive manufacturing (AM) offers the possibility to rapidly produce complex geometries that are not achievable with conventional manufacturing methods. The two most common technologies, Laser Powder Bed Fusion (LPBF) and Direct Metal Deposition (DM ...
EPFL2022
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.