Publication

Byzantine-Resilient Learning Beyond Gradients: Distributing Evolutionary Search

Rachid Guerraoui, Andrei Kucharavy, Matteo Monti
2023
Article de conférence
Résumé

Modern machine learning (ML) models are capable of impressive performances. However, their prowess is not due only to the improvements in their architecture and training algorithms but also to a drastic increase in computational power used to train them.|Such a drastic increase led to a growing interest in distributed ML, which in turn made worker failures and adversarial attacks an increasingly pressing concern. While distributed byzantine resilient algorithms have been proposed in a differentiable setting, none exist in a gradient-free setting.|The goal of this work is to address this shortcoming. For that, we introduce a more general definition of byzantine-resilience in ML - the model-consensus, that extends the definition of the classical distributed consensus. We then leverage this definition to show that a general class of gradient-free ML algorithms - (1,lambda)-Evolutionary Search - can be combined with classical distributed consensus algorithms to generate gradient-free byzantine-resilient distributed learning algorithms. We provide proofs and pseudo-code for two specific cases - the Total Order Broadcast and proof-of-work leader election.|To our knowledge, this is the first time a byzantine resilience in gradient-free ML was defined, and algorithms to achieve it - were proposed.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (36)
Problème des généraux byzantins
En informatique, le problème des généraux byzantins est une métaphore qui traite de la remise en cause de la fiabilité des transmissions et de l'intégrité des interlocuteurs. La question est donc de savoir comment, et dans quelle mesure, il est possible de prendre en compte une information dont la source ou le canal de transmission est suspect. La solution implique l'établissement d'un algorithme (d'une stratégie) adapté. Ce problème a été traité en profondeur pour la première fois dans l'article The Byzantine Generals Problem publié en 1982.
Algorithme évolutionniste
vignette|redresse=1.2|Un algorithme évolutionnaire utilise itérativement des opérateurs de sélections (en bleu) et de variation (en jaune). i : initialisation, f(X) : évaluation, ? : critère d'arrêt, Se : sélection, Cr : croisement, Mu : mutation, Re : remplacement, X* : optimum. Les algorithmes évolutionnistes ou algorithmes évolutionnaires (evolutionary algorithms en anglais), sont une famille d'algorithmes dont le principe s'inspire de la théorie de l'évolution pour résoudre des problèmes divers.
Apprentissage automatique
L'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Afficher plus
Publications associées (47)

Optimization Algorithms for Decentralized, Distributed and Collaborative Machine Learning

Anastasiia Koloskova

Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
EPFL2024

Impact of Redundancy on Resilience in Distributed Optimization and Learning

Nirupam Gupta, Shuo Liu

This paper considers the problem of resilient distributed optimization and stochastic learning in a server-based architecture. The system comprises a server and multiple agents, where each agent has its own local cost function. The agents collaborate with ...
New York2023

Byzantine Machine Learning: A Primer

Rachid Guerraoui, Nirupam Gupta, Rafaël Benjamin Pinot

The problem of Byzantine resilience in distributed machine learning, a.k.a., Byzantine machine learning, consists in designing distributed algorithms that can train an accurate model despite the presence of Byzantine nodes, i.e., nodes with corrupt data or ...
2023
Afficher plus