Le modèle d'Ising est un modèle de physique statistique qui a été adapté à divers phénomènes caractérisés par des interactions locales de particules à deux états.
L'exemple principal est le ferromagnétisme pour lequel le modèle d'Ising est un modèle sur réseau de moments magnétiques, dans lequel les particules sont toujours orientées suivant le même axe spatial et ne peuvent prendre que deux valeurs.
Ce modèle est parfois appelé modèle de Lenz-Ising en référence aux physiciens Wilhelm Lenz et Ernst Ising.
Malgré la simplicité du calcul à une dimension, le calcul à deux dimensions est très complexe. Quant au calcul exact à trois dimensions par les méthodes traditionnelles, il est estimé impossible. L'extrême simplicité de l'interaction élémentaire permet donc de faire apparaître d'une façon très élégante toute la complexité due à la géométrie du matériau étudié, cette simplicité permettant de nombreuses simulations informatiques.
Ce modèle permet de décrire relativement simplement le magnétisme des matériaux ferromagnétiques présentant une anisotropie très forte avec une direction privilégiée très marquée.
Une autre application du modèle d'Ising est la description des alliages binaires. Dans ce cas, les moments magnétiques +M représentent une des espèces atomiques, et les moments magnétiques -M représentent l'autre espèce atomique. L'ordre à longue distance du modèle d'Ising peut décrire une séparation de phase entre les deux espèces (dans le cas où la phase de basse température à tous les moments égaux à -M ou +M) ou bien une phase ordonnée dans laquelle l'un des sous-réseaux porte des atomes d'une espèce (moments +M) et l'autre sous-réseau des atomes de l'autre espèce. La phase désordonnée du modèle d'Ising décrit respectivement un état où les deux espèces se mélangent ou un état où les sous-réseaux sont équivalents. Le second cas est appelé transition ordre-désordre. Cette version du modèle d'Ising est appelée modèle de Bragg et (1934 - 1936).
Une troisième application de ce modèle est la description d'une transition liquide gaz.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course presents an introduction to statistical mechanics geared towards materials scientists. The concepts of macroscopic thermodynamics will be related to a microscopic picture and a statistical
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art
Aborder, formuler et résoudre des problèmes de physique en utilisant des méthodes numériques élémentaires. Comprendre les avantages et les limites de ces méthodes (stabilité, convergence). Illustrer d
vignette|Représentation schématique d'une structure aléatoire d'un verre de spins (haut) et d'un état ferromagnétique (bas). Les verres de spin sont des alliages métalliques comportant un petit nombre d'impuretés magnétiques disposées au hasard dans l'alliage. À chaque impureté est associée un spin. Le couplage entre ces différents spins peut être plus ou moins intense - attractif ou répulsif - en fonction de la distance qui les sépare.
Le 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
Une théorie conforme des champs ou théorie conforme (en anglais, conformal field theory ou CFT) est une variété particulière de théorie quantique des champs admettant le comme groupe de symétrie. Ce type de théorie est particulièrement étudié lorsque l'espace-temps y est bi-dimensionnel car en ce cas le groupe conforme est de dimension infinie et bien souvent la théorie est alors exactement soluble.
Phase transitions in condensed matter are a source of exotic emergent properties. We study the fully frustrated bilayer Heisenberg antiferromagnet to demonstrate that an applied magnetic field creates a previously unknown emergent criticality. The quantum ...
Using quantum Monte Carlo simulations and field-theory arguments, we study the fully frustrated transversefield Ising model on the square lattice for the purpose of quantitatively relating two different order parameters to each other. We consider a "primar ...
We microscopically analyze the nearest-neighbor Heisenberg model on the maple leaf lattice through neural quantum state (NQS) and infinite density matrix renormalization group (iDMRG) methods. Embarking to parameter regimes beyond the exact dimer singlet g ...