Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Cadre ZachmanLe cadre Zachman est un cadre d'architecture d'entreprise qui permet d'une manière formelle et hautement structurée de définir le système d'information d'une entreprise. Il utilise un modèle de classification à deux dimensions basé sur : six interrogations de base : Quoi, Comment, Où, Qui, Quand, et Pourquoi (What, How, Where, Who, When, Why), qui croisent six types de modèles distincts qui se rapportent à des groupes de parties prenantes : Visionnaire, Propriétaire, Concepteur, Réalisateur, Sous-traitant et Exécutant (visionary, owner, designer, builder, implementer, worker) pour présenter une vue holistique de l'entreprise qui est modélisée.
Cadre d'architectureUn cadre d'architecture est une spécification sur la façon d'organiser et de présenter une architecture de systèmes ou l'architecture informatique d'un organisme. Étant donné que les disciplines de l'architecture de systèmes et de l'architecture informatique sont très larges, et que la taille de ces systèmes peut être très grande, il peut en résulter des modèles très complexes. Afin de gérer cette complexité, il est avantageux de définir un cadre d'architecture par un ensemble standard de catégories de modèles (appelés “vues”) qui ont chacun un objectif spécifique.
Greenhouse gas inventoryGreenhouse gas inventories are emission inventories of greenhouse gas emissions that are developed for a variety of reasons. Scientists use inventories of natural and anthropogenic (human-caused) emissions as tools when developing atmospheric models. Policy makers use inventories to develop strategies and policies for emissions reductions and to track the progress of those policies. Regulatory agencies and corporations also rely on inventories to establish compliance records with allowable emission rates.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Greenhouse gas emissionsGreenhouse gas emissions (abbreviated as GHG emissions) from human activities strengthen the greenhouse effect, contributing to climate change. Carbon dioxide (), from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the US, although the United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies.
Gas ventingGas venting, more specifically known as natural-gas venting or methane venting, is the intentional and controlled release of gases containing alkane hydrocarbons - predominately methane - into earth's atmosphere. It is a widely used method for disposal of unwanted gases which are produced during the extraction of coal and crude oil. Such gases may lack value when they are not recyclable into the production process, have no export route to consumer markets, or are surplus to near-term demand.
Adversarial machine learningAdversarial machine learning is the study of the attacks on machine learning algorithms, and of the defenses against such attacks. A survey from May 2020 exposes the fact that practitioners report a dire need for better protecting machine learning systems in industrial applications. To understand, note that most machine learning techniques are mostly designed to work on specific problem sets, under the assumption that the training and test data are generated from the same statistical distribution (IID).
Electric energy consumptionElectric energy consumption is energy consumption in the form of electrical energy. About a fifth of global energy is consumed as electricity: for residential, industrial, commercial, transportation and other purposes. Quickly increasing this share by further electrification is extremely important to limit climate change, because most other energy is consumed by burning fossil fuels thus emitting greenhouse gases which trap heat. The global electricity consumption in 2022 was 24,398 terawatt-hour (TWh), almost exactly three times the amount of consumption in 1981 (8,132 TWh).