Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Rainfall characteristics such as intensity, duration, and frequency are key determinants of the hydro-geomorphological response of a catchment. The presence of non-linear and threshold effects makes the relationship between rainfall variability and geomorphological dynamics difficult to quantify. This is particularly relevant under predicted exacerbated erosion induced by an intensification of hydroclimatic extremes. In this study, we quantify the effects of changes in rainfall temporal variability on catchment morphology and sediment erosion, transport, and deposition across a broad spectrum of grain size distributions and climatic conditions. To this purpose, multiple rainfall realizations are simulated using a numerical rainfall generator, while geomorphic response and soil erosion dynamics are assessed through a landscape evolution model (CAESAR-Lisflood). Virtual catchments are used for the numerical experiments and simulations are conducted over centennial time scales. Simulation results show that higher rainfall temporal variability increases net sediment discharge, domain erosion and deposition volumes, and secondary channel development. Particularly, dry regions respond more actively to rainfall variations and finer grain size configurations amplify the hydro-geomorphological response. We find that changes in erosion rates due to rainfall variations can be expressed as a power-law function of the ratio of rainfall temporal variabilities (quantified here through the Gini index). Results are further supported by long-term observational data and simulations over real catchments. Such quantification of the effects of predicted changes in rainfall patterns on catchment hydro-geomorphic response, as mediated by local soil properties, is crucial to forecasting modifications in sediment dynamics due to climate change.