Publication

Graph Exploration for Effective Multiagent Q-Learning

Résumé

This article proposes an exploration technique for multiagent reinforcement learning (MARL) with graph-based communication among agents. We assume that the individual rewards received by the agents are independent of the actions by the other agents, while their policies are coupled. In the proposed framework, neighboring agents collaborate to estimate the uncertainty about the state-action space in order to execute more efficient explorative behavior. Different from existing works, the proposed algorithm does not require counting mechanisms and can be applied to continuous-state environments without requiring complex conversion techniques. Moreover, the proposed scheme allows agents to communicate in a fully decentralized manner with minimal information exchange. And for continuous-state scenarios, each agent needs to exchange only a single parameter vector. The performance of the algorithm is verified with theoretical results for discrete-state scenarios and with experiments for the continuous ones.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.