Few-shot Learning for Efficient and Effective Machine Learning Model Adaptation
Publications associées (148)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Owing to the diminishing returns of deep learning and the focus on model accuracy, machine learning for chemistry might become an endeavour exclusive to well-funded institutions and industry. Extending the focus to model efficiency and interpretability wil ...
Machine learning has become the state of the art for the solution of the diverse inverse problems arising from computer vision and medical imaging, e.g. denoising, super-resolution, de-blurring, reconstruction from scanner data, quantitative magnetic reson ...
The problem of Byzantine resilience in distributed machine learning, a.k.a., Byzantine machine learning, consists in designing distributed algorithms that can train an accurate model despite the presence of Byzantine nodes, i.e., nodes with corrupt data or ...
Machine learning models trained with passive sensor data from mobile devices can be used to perform various inferences pertaining to activity recognition, context awareness, and health and well-being. Prior work has improved inference performance through t ...
In real-world scenarios, achieving domain generalization (DG) presents significant challenges as models are required to generalize to unknown target distributions. Generalizing to unseen multi-modal distributions poses even greater difficulties due to the ...
In the last decade, deep neural networks have achieved tremendous success in many fields of machine learning.However, they are shown vulnerable against adversarial attacks: well-designed, yet imperceptible, perturbations can make the state-of-the-art deep ...
EPFL2022
, , ,
Machine learning (ML) models for molecules and materials commonly rely on a decomposition of the global target quantity into local, atom-centered contributions. This approach is convenient from a computational perspective, enabling large-scale ML-driven si ...
Washington2023
, ,
Cough audio signal classification is a potentially useful tool in screening for respiratory disorders, such as COVID-19. Since it is dangerous to collect data from patients with such contagious diseases, many research teams have turned to crowdsourcing to ...
2022
Artificial intelligence and machine learning algorithms have become ubiquitous. Although they offer a wide range of benefits, their adoption in decision-critical fields is limited by their lack of interpretability, particularly with textual data. Moreover, ...
EPFL2022
Over the last two decades, data-powered machine learning (ML) tools have profoundly transformed numerous scientific fields. In computational chemistry, machine learning applications have permitted faster predictions of chemical properties and provided powe ...