Transportation-based functional ANOVA and PCA for covariance operators
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
How can we discern whether the covariance operator of a stochastic pro-cess is of reduced rank, and if so, what its precise rank is? And how can we do so at a given level of confidence? This question is central to a great deal of methods for functional dat ...
INST MATHEMATICAL STATISTICS-IMS2022
We study the homogenization of the Poisson equation with a reaction term and of the eigenvalue problem associated to the generator of multiscale Langevin dynamics. Our analysis extends the theory of two-scale convergence to the case of weighted Sobolev spa ...
OXFORD UNIV PRESS2023
, , , ,
Background The application value of T(2)mapping in evaluating cervical cancer (CC) features remains unclear. Purpose To investigate the role of T(2)values in evaluating CC classification, grade, and lymphovascular space invasion (LVSI) in comparison to app ...
WILEY2020
We prove that under certain mild moment and continuity assumptions, the d-dimensional continuum Gaussian free field is the only stochastic process satisfying the usual domain Markov property and a scaling assumption. Our proof is based on a decomposition o ...
This thesis focuses on non-parametric covariance estimation for random surfaces, i.e.~functional data on a two-dimensional domain. Non-parametric covariance estimation lies at the heart of functional data analysis, andconsiderations of statistical and comp ...
The Internet of Things creates opportunities to develop data-driven design methodologies for smart cities. However, effects rather than causes are often measured in complex urban systems, requiring robust data-interpretation methodologies. Additionally, ef ...
We analyze the adaptive first order algorithm AMSGrad, for solving a constrained stochastic optimization problem with a weakly convex objective. We prove the O~(t−1/2) rate of convergence for the squared norm of the gradient of Moreau envelope, ...
Many techniques for data science and uncertainty quantification demand efficient tools to handle Gaussian random fields, which are defined in terms of their mean functions and covariance operators. Recently, parameterized Gaussian random fields have gained ...
Covariance estimation is ubiquitous in functional data analysis. Yet, the case of functional observations over multidimensional domains introduces computational and statistical challenges, rendering the standard methods effectively inapplicable. To address ...
Aims. We investigate the contribution of shot-noise and sample variance to uncertainties in the cosmological parameter constraints inferred from cluster number counts, in the context of the Euclid survey. Methods. By analysing 1000 Euclid-like light cones, ...