Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We analyze the adaptive first order algorithm AMSGrad, for solving a constrained stochastic optimization problem with a weakly convex objective. We prove the rate of convergence for the squared norm of the gradient of Moreau envelope, which is the standard stationarity measure for this class of problems. It matches the known rates that adaptive algorithms enjoy for the specific case of unconstrained smooth nonconvex stochastic optimization. Our analysis works with mini-batch size of 1, constant first and second order moment parameters, and possibly unbounded optimization domains. Finally, we illustrate the applications and extensions of our results to specific problems and algorithms.
Victor Panaretos, Yoav Zemel, Valentina Masarotto
Michel Bierlaire, Nicola Marco Ortelli, Matthieu Marie Cochon de Lapparent