Publication

Student Answer Forecasting: Transformer-Driven Answer Choice Prediction for Language Learning

Résumé

Intelligent Tutoring Systems (ITS) enhance personalized learning by predicting student answers to provide immediate and customized instruction. However, recent research has primarily focused on the correctness of the answer rather than the student's performance on specific answer choices, limiting insights into students' thought processes and potential misconceptions. To address this gap, we present MCQStudentBert, an answer forecasting model that leverages the capabilities of Large Language Models (LLMs) to integrate contextual understanding of students' answering history along with the text of the questions and answers. By predicting the specific answer choices students are likely to make, practitioners can easily extend the model to new answer choices or remove answer choices for the same multiple-choice question (MCQ) without retraining the model. In particular, we compare MLP, LSTM, BERT, and Mistral 7B architectures to generate embeddings from students' past interactions, which are then incorporated into a finetuned BERT's answer-forecasting mechanism. We apply our pipeline to a dataset of language learning MCQ, gathered from an ITS with over 10,000 students to explore the predictive accuracy of MCQStudentBert, which incorporates student interaction patterns, in comparison to correct answer prediction and traditional mastery-learning feature-based approaches. This work opens the door to more personalized content, modularization, and granular support.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (24)
Questionnaire à choix multiples
vignette|Exemple de QCM. Un questionnaire à choix multiples ou multiple (QCM) est un outil d'enquête ou d'évaluation utilisé dans l'enseignement ainsi que dans les enquêtes quantitatives en recherche sociale et le marketing. Dans l'enseignement, c'est un procédé d'évaluation dans lequel sont proposées plusieurs réponses pour chaque question. Une ou plusieurs de ces propositions de réponse sont correctes. Les autres sont des réponses erronées, également appelées « distracteurs » (ou "leurres").
Systèmes de questions-réponses
Un système de questions-réponses (question answering system en anglais, ou QA system) est un système informatique permettant de répondre automatiquement à des questions posées par des humains, lors d'un échange fait en langue naturelle (comme le français). La discipline liée appartient aux domaines du traitement automatique de la langue et de la recherche d'information. Elle se démarque de l'interrogation de moteurs de recherche en cela qu'elle vise non seulement à récupérer les documents pertinents d'une collection de textes, mais également à formuler une réponse très ciblée à la question posée.
Grand modèle de langage
Un grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Afficher plus
Publications associées (31)