K3 surfaces, cyclotomic polynomials and orthogonal groups
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The Ring Learning with Errors (RLWE) problem has become one of the most widely used cryptographic assumptions for the construction of modern cryptographic primitives. Most of these solutions make use of power-of-two cyclotomic rings mainly due to its simpl ...
We obtain new results pertaining to convergence and recurrence of multiple ergodic averages along functions from a Hardy field. Among other things, we confirm some of the conjectures posed by Frantzikinakis in [Fra10; Fra16] and obtain combinatorial applic ...
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
Optimization is a fundamental tool in modern science. Numerous important tasks in biology, economy, physics and computer science can be cast as optimization problems. Consider the example of machine learning: recent advances have shown that even the most s ...
The “Multivariate Ring Learning with Errors” problem was presented as a generalization of Ring Learning with Errors (RLWE), introducing efficiency improvements with respect to the RLWE counterpart thanks to its multivariate structure. Nevertheless, the rec ...
We present a technique for the approximation of a class of Hilbert space--valued maps which arise within the framework of model order reduction (MOR) for parametric partial differential equations, whose solution map has a meromorphic structure. Our MOR str ...
The evaluation of small degree polynomials is critical for the computation of elementary functions. It has been extensively studied and is well documented. In this article, we evaluate existing methods for polynomial evaluation on superscalar architecture. ...
We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varietie ...
We characterize the irreducible polynomials that occur as the characteristic polynomial of an automorphism of an even unimodular lattice of a given signature, generalizing a theorem of Gross and McMullen. As part of the proof, we give a general criterion i ...
We present a technique for the approximation of a class of Hilbert space-valued maps which arise within the framework of Model Order Reduction for parametric partial differential equations, whose solution map has a meromorphic structure. Our MOR stategy co ...