Corps (entité)In common usage and classical mechanics, a physical object or physical body (or simply an object or body) is a collection of matter within a defined contiguous boundary in three-dimensional space. The boundary surface must be defined and identified by the properties of the material, although it may change over time. The boundary is usually the visible or tangible surface of the object. The matter in the object is constrained (to a greater or lesser degree) to move as one object.
Fréquence spatialeLa fréquence spatiale est une grandeur caractéristique d'une structure qui se reproduit identiquement à des positions régulièrement espacées. Elle est la mesure du nombre de répétitions par unité de longueur ou par unité d'angle. Le concept de fréquence spatiale trouve ses applications principales en optique, particulièrement en photographie, en vidéo et en astronomie. Elle permet de caractériser la finesse des détails d'une mire ou d'une image formée sur un capteur : elle s'exprime fréquemment en cycle par millimètre (cy/mm).
Zero elementIn mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. An additive identity is the identity element in an additive group. It corresponds to the element 0 such that for all x in the group, 0 + x = x + 0 = x. Some examples of additive identity include: The zero vector under vector addition: the vector of length 0 and whose components are all 0. Often denoted as or .
Algebra of physical spaceIn physics, the algebra of physical space (APS) is the use of the Clifford or geometric algebra Cl3,0(R) of the three-dimensional Euclidean space as a model for (3+1)-dimensional spacetime, representing a point in spacetime via a paravector (3-dimensional vector plus a 1-dimensional scalar). The Clifford algebra Cl3,0(R) has a faithful representation, generated by Pauli matrices, on the spin representation C2; further, Cl3,0(R) is isomorphic to the even subalgebra Cl(R) of the Clifford algebra Cl3,1(R).
Vecteur isotropeEn mathématiques, un vecteur isotrope pour une forme bilinéaire f est un vecteur x tel que f(x, x) = 0. Soient E un espace vectoriel et f une forme bilinéaire symétrique sur E. On dit qu'un vecteur x de E est isotrope (pour f, ou pour la forme quadratique associée) si f(x, x) = 0. L'ensemble des vecteurs isotropes est appelé le cône isotrope. Il contient le noyau de f. Au cône isotrope, on associe une quadrique projective. La forme bilinéaire est dite définie — et la forme quadratique est dite anisotrope — si 0 est son seul vecteur isotrope.
Inverse scattering transformIn mathematics, the inverse scattering transform is a method for solving some non-linear partial differential equations. The method is a non-linear analogue, and in some sense generalization, of the Fourier transform, which itself is applied to solve many linear partial differential equations. The name "inverse scattering method" comes from the key idea of recovering the time evolution of a potential from the time evolution of its scattering data: inverse scattering refers to the problem of recovering a potential from its scattering matrix, as opposed to the direct scattering problem of finding the scattering matrix from the potential.
Loi commutativeEn mathématiques, et plus précisément en algèbre générale, une loi de composition interne sur un ensemble E est dite commutative si pour tous x et y dans E, En notant , la commutativité se traduit par le diagramme commutatif suivant : Fichier:Commutativité.png Les exemples les plus simples de lois commutatives sont sans doute l'addition et la multiplication des entiers naturels. L'addition et la multiplication des nombres réels et des nombres complexes, l'addition des vecteurs, l'intersection et la réunion des ensembles sont également des lois commutatives.
Variables conjuguées (formalisme hamiltonien)Dans le formalisme hamiltonien de la physique, deux variables sont dites conjuguées si l'une est la dérivée de l'action par rapport à l'autre. Le produit des deux variables conjuguées est alors homogène à une action et s'exprime, dans le Système international (SI) d'unités, en joule seconde (J·s). Par exemple, l'énergie et le temps sont deux variables conjuguées car le produit d'une énergie par une durée est homogène à une action.
Spherical wave transformationSpherical wave transformations leave the form of spherical waves as well as the laws of optics and electrodynamics invariant in all inertial frames. They were defined between 1908 and 1909 by Harry Bateman and Ebenezer Cunningham, with Bateman giving the transformation its name. They correspond to the conformal group of "transformations by reciprocal radii" in relation to the framework of Lie sphere geometry, which were already known in the 19th century.
Censure cosmiqueEn astrophysique, le terme de censure cosmique (cosmic censorship en anglais) désigne une conjecture à propos de la nature des singularités dans l'espace-temps. Selon elle, il n'existe pas de processus physique donnant naissance à une singularité nue, c'est-à-dire une région de l'espace dont le champ gravitationnel prend des valeurs infinies et qui ne serait pas cachée derrière un horizon des événements. Le terme de « censure cosmique » est entre autres l'œuvre du mathématicien britannique Roger Penrose.