Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
This work studies multi-agent sharing optimization problems with the objective function being the sum of smooth local functions plus a convex (possibly non-smooth) function coupling all agents. This scenario arises in many machine learning and engineering ...
For lumped homogeneous reaction systems, this paper presents a kinetic model identification scheme that provides maximum-likelihood parameter estimates and guarantees convergence to global optimality. The use of the extent-based incremental approach allows ...
Stochastic gradient descent (SGD) and randomized coordinate descent (RCD) are two of the workhorses for training modern automated decision systems. Intriguingly, convergence properties of these methods are not well-established as we move away from the spec ...
This paper introduces a method for computing points satisfying the second-order necessary optimality conditions for nonconvex minimization problems subject to a closed and convex constraint set. The method comprises two independent steps corresponding to t ...
Semidefinite programming (SDP) is a powerful framework from convex optimization that has striking potential for data science applications. This paper develops a provably correct algorithm for solving large SDP problems by economizing on both the storage an ...
This paper proposes a computational approach to form-find pin-jointed bar structures subjected to combinations of tension and compression forces. The generated equilibrium states can meet structural and geometrical constraints via gradient-based optimizati ...
In this paper, we propose a new graph-based transform and illustrate its potential application to signal compression. Our approach relies on the careful design of a graph that optimizes the overall rate-distortion performance through an effective graph-bas ...
A broad class of convex optimization problems can be formulated as a semidefinite program (SDP), minimization of a convex function over the positive-semidefinite cone subject to some affine constraints. The majority of classical SDP solvers are designed fo ...
One of the main goal of Artificial Intelligence is to develop models capable of providing valuable predictions in real-world environments. In particular, Machine Learning (ML) seeks to design such models by learning from examples coming from this same envi ...