Publication
Suppose that the vertices of a graph G are colored with two colors in an unknown way. The color that occurs on more than half of the vertices is called the majority color (if it exists), and any vertex of this color is called a majority vertex. We study the problem of finding a majority vertex (or show that none exists), if we can query edges to learn whether their endpoints have the same or different colors. Denote the least number of queries needed in the worst case by m(G). It was shown by Saks and Werman that m(K-n) = n - b(n), where b(n) is the number of 1's in the binary representation of n.