Statistical parameterIn statistics, as opposed to its general use in mathematics, a parameter is any measured quantity of a statistical population that summarises or describes an aspect of the population, such as a mean or a standard deviation. If a population exactly follows a known and defined distribution, for example the normal distribution, then a small set of parameters can be measured which completely describes the population, and can be considered to define a probability distribution for the purposes of extracting samples from this population.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Indicateur de dispersionEn statistique, un indicateur de dispersion mesure la variabilité des valeurs d’une série statistique. Il est toujours positif et d’autant plus grand que les valeurs de la série sont étalées. Les plus courants sont la variance, l'écart-type et l'écart interquartile. Ces indicateurs complètent l’information apportée par les indicateurs de position ou de tendance centrale, mesurés par la moyenne ou la médiane. Dans la pratique, c'est-à-dire dans l'industrie, les laboratoires ou en métrologie, où s'effectuent des mesurages, cette dispersion est estimée par l'écart type.
Statistical theoryThe theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches. Within a given approach, statistical theory gives ways of comparing statistical procedures; it can find a best possible procedure within a given context for given statistical problems, or can provide guidance on the choice between alternative procedures.
StatistiqueLa statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
Réacteur nucléaireUn réacteur nucléaire est un ensemble de dispositifs comprenant du combustible nucléaire, qui constitue le « cœur » du réacteur, dans lequel une réaction en chaîne peut être initiée et contrôlée par des agents humains ou par des systèmes automatiques, suivant des protocoles et au moyen de dispositifs propres à la fission nucléaire. La chaleur ainsi produite est ensuite évacuée et éventuellement convertie en énergie électrique.
Statistical assumptionStatistics, like all mathematical disciplines, does not infer valid conclusions from nothing. Inferring interesting conclusions about real statistical populations almost always requires some background assumptions. Those assumptions must be made carefully, because incorrect assumptions can generate wildly inaccurate conclusions. Here are some examples of statistical assumptions: Independence of observations from each other (this assumption is an especially common error). Independence of observational error from potential confounding effects.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Réacteur à eau légèreUn réacteur à eau légère (REL) ou light water reactor (LWR) est un réacteur nucléaire qui utilise de l'eau, aussi appelée eau légère, comme fluide caloporteur et modérateur. Cela le distingue du réacteur à eau lourde et du réacteur modéré au graphite. Il s'agit de réacteurs à neutrons thermiques. Les réacteurs à eau légère les plus courants sont les réacteurs à eau pressurisée (REP) et les réacteurs à eau bouillante (REB). D'autres types de réacteurs sont refroidis à l'eau légère, notamment les RBMK russes et des réacteurs militaires de production de plutonium.