Optical spectroscopy study of carriers recombination in quantum wires
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Excitons play an essential role in the optical response of two-dimensional materials. These are bound states showing up in the band gaps of many-body systems and are conceived as quasiparticles formed by an electron and a hole. By performing real-time simu ...
Since the dawn of humanity, human beings seeked to light their surroundings for their well-being, security and development. The efficiency of ancient lighting devices, e.g. oil lamps or candles, was in the order of 0.03-0.04% and jumped to 0.4-0.6% with th ...
In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
Electrically connected and plasmonically enhanced molecular junctions combine the optical functionalities of high field confinement and enhancement (cavity function), and of high radiative efficiency (antenna function) with the electrical functionalities o ...
This thesis uses femtosecond laser spectroscopy in studying strong correlation in condensed matters that are pertinent to future technology: a wide bandgap perovskite and a quantum material, with the employment of ultrafast time-resolved spectroscopy in th ...
Disorder at etched edges of graphene quantum dots (GQD) enables random all-to-all interactions between localized charges in partially filled Landau levels, providing a potential platform to realize the Sachdev-Ye-Kitaev (SYK) model. We use quantum Hall edg ...
Over the past decade, quantum photonics platforms aiming at harnessing the fundamental properties of single particles, such as quantum superposition and quantum entanglement, have flourished. In this context, single-photon emitters capable of operating at ...
Low-level light detection with high spatial and timing accuracy is a growing area of interest by virtue of applications such as light detection and ranging (LiDAR), biomedical imaging, time-resolved Raman spectroscopy, and quantum applications. Single-phot ...
Our understanding of quantum materials is commonly based on precise determinations of their electronic spectrum by spectroscopic means, most notably angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy. Both require atomicall ...
Sensing and imaging of light in the shortwave infrared (SWIR) range is increasingly used in various fields, including bio-imaging, remote sensing, and semiconductor process control. SWIR-sensitive organic photodetectors (OPDs) are promising because organic ...