Higher-dimensional gamma matricesIn mathematical physics, higher-dimensional gamma matrices generalize to arbitrary dimension the four-dimensional Gamma matrices of Dirac, which are a mainstay of relativistic quantum mechanics. They are utilized in relativistically invariant wave equations for fermions (such as spinors) in arbitrary space-time dimensions, notably in string theory and supergravity. The Weyl–Brauer matrices provide an explicit construction of higher-dimensional gamma matrices for Weyl spinors.
Espace à quatre dimensionsframe|L'équivalent en quatre dimensions du cube est le tesseract. On le voit ici en rotation, projeté dans l'espace usuel (les arêtes représentées comme des tubes bleus sur fond noir).|alt=Animation d'un tesseract (les arêtes représentées comme des tubes bleus sur fond noir). En mathématiques, et plus spécialement en géométrie, l'espace à quatre dimensions (souvent abrégé en 4D ; on parlera par exemple de rotations en 4D) est une extension abstraite du concept de l'espace usuel vu comme espace à trois dimensions : tandis que l'espace tridimensionnel nécessite la donnée de trois nombres, appelés dimensions, pour décrire la taille ou la position des objets, l'espace à quatre dimensions en nécessite quatre.
D-braneEn théorie des cordes, une D-brane est une brane sur laquelle sont fixées les extrémités des cordes ouvertes qui sont à l'origine de la matière qu'elle contient. Le D de D-brane, vient de Dirichlet, car le fait que les bouts de la corde ne peuvent sortir de la brane s'appelle la condition de Dirichlet. Selon ce modèle, les propriétés d'une corde (mode vibratoire, taille ; particule engendrée) sont uniquement caractérisées par ses extrémités et les bouts d'une corde ne peuvent sortir de la D-brane sur lesquels ils se trouvent.
DilatonEn physique théorique, le dilaton désignait à l'origine un champ scalaire théorique (comme le photon réfère à un champ électromagnétique). Le dilaton apparaît dans la théorie de Kaluza-Klein et obéit à une équation ondulaire non homogène, généralisant l'équation de Klein-Gordon, avec un champ électromagnétique très fort comme source : De plus, dans la théorie des cordes, le dilaton est une particule d'un champ scalaire qui peut être vu comme la trace du graviton ; un champ scalaire (suivant l'équation Klein-Gordon) qui vient toujours avec la gravité.
Défaut topologiqueEn cosmologie, un défaut topologique est une configuration souvent stable de matière que certaines théories prédisent avoir été formée lors des transitions de phase de l'univers primitif. Selon la nature des brisures de symétrie, on suppose la formation de nombreux solitons au travers du mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble. Les défauts topologiques les plus courants sont les monopôles magnétiques, les cordes cosmiques, les murs de domaine, les skyrmions et les textures.
Topological orderIn physics, topological order is a kind of order in the zero-temperature phase of matter (also known as quantum matter). Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.
Noyau atomiquevignette|Noyau atomique de l'hélium.Le noyau atomique est la région située au centre d'un atome, constituée de protons et de neutrons (les nucléons). La taille du noyau (de l'ordre du femtomètre, soit ) est environ plus petite que celle de l'atome () et concentre quasiment toute sa masse. Les forces nucléaires qui s'exercent entre les nucléons sont à peu près un million de fois plus grandes que les forces entre les atomes ou les molécules. Les noyaux instables, dits radioactifs, sont ceux d'où s'échappent des neutrons.
Force nucléaireLa force nucléaire, qui s'exerce entre nucléons, est responsable de la liaison des protons et des neutrons dans les noyaux atomiques. Elle peut être interprétée en termes d'échanges de mésons légers, comme les pions. Même si son existence est démontrée depuis les années 1930, les scientifiques n'ont pas réussi à établir une loi permettant de calculer sa valeur à partir de paramètres connus, contrairement aux lois de Coulomb et de Newton.
Large extra dimensionsIn particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. (Why is the force of gravity so weak compared to the electromagnetic force and the other fundamental forces?) The model tries to explain this problem by postulating that our universe, with its four dimensions (three spatial ones plus time), exists on a membrane in a higher dimensional space.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .