Proton SynchrotronThe Proton Synchrotron (PS, sometimes also referred to as CPS) is a particle accelerator at CERN. It is CERN's first synchrotron, beginning its operation in 1959. For a brief period the PS was the world's highest energy particle accelerator. It has since served as a pre-accelerator for the Intersecting Storage Rings (ISR) and the Super Proton Synchrotron (SPS), and is currently part of the Large Hadron Collider (LHC) accelerator complex. In addition to protons, PS has accelerated alpha particles, oxygen and sulfur nuclei, electrons, positrons, and antiprotons.
Rayonnement synchrotronLe rayonnement synchrotron, ou rayonnement de courbure, est un rayonnement électromagnétique émis par une particule chargée qui se déplace dans un champ magnétique et dont la trajectoire est déviée par ce champ magnétique. Ce rayonnement est émis en particulier par des électrons qui tournent dans un anneau de stockage. Puisque ces particules modifient régulièrement leur course, leur vitesse change régulièrement, elles émettent alors de l'énergie (sous forme de photons) qui correspond à l’accélération subie.
Health threat from cosmic raysHealth threats from cosmic rays are the dangers posed by cosmic rays to astronauts on interplanetary missions or any missions that venture through the Van-Allen Belts or outside the Earth's magnetosphere. They are one of the greatest barriers standing in the way of plans for interplanetary travel by crewed spacecraft, but space radiation health risks also occur for missions in low Earth orbit such as the International Space Station (ISS).
Transfert linéique d'énergieLe transfert linéique d'énergie (TLE), ou transfert d'énergie linéique (TEL), Linear energy transfer (LET) en anglais, est une quantité qui décrit l'énergie transférée par une particule ionisante traversant la matière, par unité de distance. Il est exprimé en . Il varie selon la nature et l'énergie du rayonnement ionisant. Typiquement, le TLE est utilisé pour quantifier l'effet du rayonnement ionisant sur des matériaux (en électronique, biologie, physique de la matière).
Compteur Geigervignette|Un compteur Geiger. Le compteur Geiger, ou compteur Geiger-Müller (ou compteur G-M), sert à mesurer un grand nombre de rayonnement ionisant (particules alpha, bêta ou gamma et rayons X, mais pas les neutrons). Cet instrument de mesure, dont le principe est imaginé vers 1913 par Hans Geiger, est mis au point par lui et Walther Müller en 1928. Prononcé à tort « Gégère » en France, la prononciation du nom de son inventeur est : Geiger (« Gaïgueur »), ou Geiger-Müller.
Total absorption spectroscopyTotal absorption spectroscopy is a measurement technique that allows the measurement of the gamma radiation emitted in the different nuclear gamma transitions that may take place in the daughter nucleus after its unstable parent has decayed by means of the beta decay process. This technique can be used for beta decay studies related to beta feeding measurements within the full decay energy window for nuclei far from stability.
Mir (station spatiale)vignette|droite|320px|Diagramme de la station Mir avec un cargo Progress-M et un vaisseau Soyouz-TM amarrés. vignette|droite|320px|La station spatiale MIR avec la navette spatiale américaine. Mir (du russe Мир signifiant « Paix » et « Monde ») était une station spatiale russe placée en orbite terrestre basse par l'Union soviétique. Mise en orbite le et détruite volontairement le , elle fut assemblée en orbite entre 1986 et 1996.
Bevatronthumb|Bevatron Le Bevatron (Billions of eV [a] Synchrotron) était un accélérateur de particules — plus précisément un synchrotron de proton à focalisation faible — situé au Laboratoire national Lawrence-Berkeley, aux États-Unis. Exploité à partir de 1954, il a permis la découverte de l'antiproton en 1955, entraînant le prix Nobel de physique pour Emilio Gino Segrè et Owen Chamberlain en 1959. Le Bevatron reçut un nouveau souffle en 1971, lorsqu'il fut joint à l'accélérateur linéaire SuperHILAC comme injecteur d'ions lourds.