**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Computation of the discrete logarithm on elliptic curves of trace one

Résumé

The security of several elliptic curve cryptosystems is based on the difficulty to compute the discrete logarithm problem. The motivation of using elliptic curves in cryptography is that there is no known sub-exponential algorithm which solves the Elliptic Curve Discrete Logarithm Problem (ECDLP) in general. However, it has been shown that some special curves do not possess a difficult ECDLP. In 1999, an article of Nigel Smart provides a very efficient method for solving the ECDLP when the underlying elliptic curve is of trace one. In this note, we describe this method in more details and recall the mathematical background in order to understand it.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (5)

Courbe elliptique

En mathématiques, une courbe elliptique est un cas particulier de courbe algébrique, munie entre autres propriétés d'une addition géométrique sur ses points.
Les courbes elliptiques ont de nombreus

Logarithme discret

Le logarithme discret est un objet mathématique utilisé en cryptologie. C'est l'analogue du logarithme réel qui est la réciproque de l'exponentielle, mais dans un groupe cyclique G fini.
Le logarithm

Cryptographie sur les courbes elliptiques

La cryptographie sur les courbes elliptiques (en anglais, elliptic curve cryptography ou ECC) regroupe un ensemble de techniques cryptographiques qui utilisent une ou plusieurs propriétés des courbe

Publications associées (3)

Chargement

Chargement

Chargement

The RSA cryptosystem introduced in 1977 by Ron Rivest, Adi Shamir and Len Adleman is the most commonly deployed public-key cryptosystem. Elliptic curve cryptography (ECC) introduced in the mid 80's by Neal Koblitz and Victor Miller is becoming an increasingly popular alternative to RSA offering competitive performance due the use of smaller key sizes. Most recently hyperelliptic curve cryptography (HECC) has been demonstrated to have comparable and in some cases better performance than ECC. The security of RSA relies on the integer factorization problem whereas the security of (H)ECC is based on the (hyper)elliptic curve discrete logarithm problem ((H)ECDLP). In this thesis the practical performance of the best methods to solve these problems is analyzed and a method to generate secure ephemeral ECC parameters is presented. The best publicly known algorithm to solve the integer factorization problem is the number field sieve (NFS). Its most time consuming step is the relation collection step. We investigate the use of graphics processing units (GPUs) as accelerators for this step. In this context, methods to efficiently implement modular arithmetic and several factoring algorithms on GPUs are presented and their performance is analyzed in practice. In conclusion, it is shown that integrating state-of-the-art NFS software packages with our GPU software can lead to a speed-up of 50%. In the case of elliptic and hyperelliptic curves for cryptographic use, the best published method to solve the (H)ECDLP is the Pollard rho algorithm. This method can be made faster using classes of equivalence induced by curve automorphisms like the negation map. We present a practical analysis of their use to speed up Pollard rho for elliptic curves and genus 2 hyperelliptic curves defined over prime fields. As a case study, 4 curves at the 128-bit theoretical security level are analyzed in our software framework for Pollard rho to estimate their practical security level. In addition, we present a novel many-core architecture to solve the ECDLP using the Pollard rho algorithm with the negation map on FPGAs. This architecture is used to estimate the cost of solving the Certicom ECCp-131 challenge with a cluster of FPGAs. Our design achieves a speed-up factor of about 4 compared to the state-of-the-art. Finally, we present an efficient method to generate unique, secure and unpredictable ephemeral ECC parameters to be shared by a pair of authenticated users for a single communication. It provides an alternative to the customary use of fixed ECC parameters obtained from publicly available standards designed by untrusted third parties. The effectiveness of our method is demonstrated with a portable implementation for regular PCs and Android smartphones. On a Samsung Galaxy S4 smartphone our implementation generates unique 128-bit secure ECC parameters in 50 milliseconds on average.

Benjamin Pierre Charles Wesolowski

We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varieties, and the geometry of ideals in cyclotomic rings.
The presumed difficulty of computing discrete logarithms in certain groups is essential for the security of a number of communication protocols deployed today. One of the most classic choices for the underlying group is the multiplicative group of a finite field. Yet this choice is showing its age, and particularly when the characteristic of the field is small: recent algorithms allow to compute logarithms efficiently in these groups. However, these methods are only heuristic: they seem to always work, yet we do not know how to prove it. In the first part, we propose to study these methods in the hope to get a better understanding, notably by revealing the geometric structures at play.
A more modern choice is the group of rational points of an elliptic curve defined over a finite field. There, the difficulty of the discrete logarithm problem seems at its peak. More generally, the group of rational points of an abelian variety (notably the Jacobian of a curve of small genus) could be appropriate. One of the main tools for studying discrete logarithms on such objects is the notion of isogeny: a morphism from a variety to another one, which allows, among other things, to transfer the computation of a logarithm. Whereas the theory for elliptic curves is already mature, little is known about the structures formed by these isogenies (the isogeny graphs) for varieties of higher dimension. In the second part, we study the structure of isogeny graphs of absolutely simple, ordinary abelian varieties, with a few consequences regarding discrete logarithms on Jacobians of hyperelliptic curves of genus 2, the main object of concern of so-called hyperelliptic cryptography.
The security of quite a few protocols, notably those relying on discrete logarithms, would collapse in front of an adversary equipped with a large-scale quantum computer. This perspective motivates cryptographers to study problems that would resist this technological feat. One of the major directions is cryptography based on Euclidean lattices, relying on the difficulty to find short vectors in a given lattice. For efficiency, one benefits from considering lattices endowed with more structure, such as the ideals of a cyclotomic field. In the third part, we study the geometry of these ideals, and show that a quantum computer allows to efficiently find much shorter vectors in these ideals than is currently possible in generic lattices.

Joppe Willem Bos, Andrea Miele

Motivated by the advantages of using elliptic curves for discrete logarithm-based public-key cryptography, there is an active research area investigating the potential of using hyperelliptic curves of genus 2. For both types of curves, the best known algorithms to solve the discrete logarithm problem are generic attacks such as Pollard rho, for which it is well-known that the algorithm can be sped up when the target curve comes equipped with an efficiently computable automorphism. In this paper we incorporate all of the known optimizations (including those relating to the automorphism group) in order to perform a systematic security assessment of two elliptic curves and two hyperelliptic curves of genus 2. We use our software framework to give concrete estimates on the number of core years required to solve the discrete logarithm problem on four curves that target the 128-bit security level: on the standardized NIST CurveP-256, on a popular curve from the Barreto-Naehrig family, and on their respective analogues in genus 2. © 2014 Springer-Verlag Berlin Heidelberg.