Fossil fuel power stationA fossil fuel power station is a thermal power station which burns a fossil fuel, such as coal or natural gas, to produce electricity. Fossil fuel power stations have machinery to convert the heat energy of combustion into mechanical energy, which then operates an electrical generator. The prime mover may be a steam turbine, a gas turbine or, in small plants, a reciprocating gas engine. All plants use the energy extracted from the expansion of a hot gas, either steam or combustion gases.
Turbo-alternateurUn turbo-alternateur est l'accouplement d'une turbine et d'un alternateur en vue de transformer la puissance mécanique d'un fluide en mouvement en électricité. Le fluide exploité peut être liquide, comme l'eau d'une rivière pour une centrale hydroélectrique, ou gazeux, comme la vapeur produite par une centrale thermique (classique ou nucléaire). De telles centrales comprennent généralement plusieurs turbo-alternateurs.
Load balancing (electrical power)Load balancing, load matching, or daily peak demand reserve refers to the use of various techniques by electrical power stations to store excess electrical power during low demand periods for release as demand rises. The aim is for the power supply system to have a load factor of 1. Grid energy storage stores electricity within the transmission grid beyond the customer.
Steam generator (nuclear power)A steam generator (aka nuclear steam raising plant ('NSRP')) is a heat exchanger used to convert water into steam from heat produced in a nuclear reactor core. They are used in pressurized water reactor between the primary and secondary coolant loops. In typical PWR designs, the primary coolant is high-purity water, kept under high pressure so it cannot boil. This primary coolant is pumped through the reactor core where it absorbs heat from the fuel rods.
ThermoeconomicsThermoeconomics, also referred to as biophysical economics, is a school of heterodox economics that applies the laws of statistical mechanics to economic theory. Thermoeconomics can be thought of as the statistical physics of economic value and is a subfield of econophysics. It is the study of the ways and means by which human societies procure and use energy and other biological and physical resources to produce, distribute, consume and exchange goods and services, while generating various types of waste and environmental impacts.