Graph structure theoremIn mathematics, the graph structure theorem is a major result in the area of graph theory. The result establishes a deep and fundamental connection between the theory of graph minors and topological embeddings. The theorem is stated in the seventeenth of a series of 23 papers by Neil Robertson and Paul Seymour. Its proof is very long and involved. and are surveys accessible to nonspecialists, describing the theorem and its consequences. A minor of a graph G is any graph H that is isomorphic to a graph that can be obtained from a subgraph of G by contracting some edges.
Coloration de graphethumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
Graphe scindévignette|240x240px| Un graphe scindé, partitionné en une clique et un ensemble stable. En théorie des graphes, un graphe scindé ou graphe séparé (en anglais : split graph) est un graphe dont les sommets peuvent être partitionnés deux parties : une clique et un ensemble stable. Les graphes scindés ont été étudiés pour la première fois par Földes et Marteau en 1977, et introduit indépendamment par Tyshkevich et Tchernyak en 1979 .
6-polytopeIn six-dimensional geometry, a six-dimensional polytope or 6-polytope is a polytope, bounded by 5-polytope facets. A 6-polytope is a closed six-dimensional figure with vertices, edges, faces, cells (3-faces), 4-faces, and 5-faces. A vertex is a point where six or more edges meet. An edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet. A cell is a polyhedron. A 4-face is a polychoron, and a 5-face is a 5-polytope.
Factor-critical graphIn graph theory, a mathematical discipline, a factor-critical graph (or hypomatchable graph) is a graph with n vertices in which every subgraph of n − 1 vertices has a perfect matching. (A perfect matching in a graph is a subset of its edges with the property that each of its vertices is the endpoint of exactly one of the edges in the subset.) A matching that covers all but one vertex of a graph is called a near-perfect matching. So equivalently, a factor-critical graph is a graph in which there are near-perfect matchings that avoid every possible vertex.
Graphe symétriqueEn théorie des graphes, un graphe non orienté G=(V,E) est symétrique (ou arc-transitif) si, étant donné deux paires quelconques de sommets reliés par une arête u1—v1 et u2—v2 de G, il existe un automorphisme de graphe : tel que et . En d'autres termes, un graphe est symétrique si son groupe d'automorphismes agit transitivement sur ses paires ordonnées de sommets reliés. Un tel graphe est parfois appelé 1-arc-transitif. Par définition, un graphe symétrique sans sommet isolé est sommet-transitif et arête-transitif.
Largeur de cliquevignette|upright=1.6|Construction d'un graphe (ici un graphe à distance héréditaire) de largeur de clique 3 par une succession d'unions disjointes, de renommages et de fusions d'étiquettes. Les étiquettes des sommets sont affichées sous forme de couleurs. En théorie des graphes, la largeur de clique d'un graphe est l'un des paramètres qui décrit la complexité structurelle du graphe ; il est étroitement lié à largeur arborescente, mais contrairement à celle-ci, elle peut être bornée même pour des graphes denses .
Graphe ptolémaïquevignette| Un graphe ptolémaïque. vignette| Le graphe gemme ou 3-fan n'est pas ptolémaïque. vignette|upright=1.4|Un graphe en bloc est un cas particulier d'un graphe ptolémaïque vignette|upright=1.4| Trois opérations qui permettent de construire tout graphe distance-héréditaire. Pour les graphes ptolémaïques, les voisins de « faux jumeaux » doivent former une clique, ce qui empêche la construction d'un cycle à 4 sommets, montré ici.
Rook's graphIn graph theory, a rook's graph is an undirected graph that represents all legal moves of the rook chess piece on a chessboard. Each vertex of a rook's graph represents a square on a chessboard, and there is an edge between any two squares sharing a row (rank) or column (file), the squares that a rook can move between. These graphs can be constructed for chessboards of any rectangular shape.
PathwidthIn graph theory, a path decomposition of a graph G is, informally, a representation of G as a "thickened" path graph, and the pathwidth of G is a number that measures how much the path was thickened to form G. More formally, a path-decomposition is a sequence of subsets of vertices of G such that the endpoints of each edge appear in one of the subsets and such that each vertex appears in a contiguous subsequence of the subsets, and the pathwidth is one less than the size of the largest set in such a decomposition.