Système de gestion de base de données relationnel-objetUn système de gestion de base de données est un ensemble de logiciels qui servent à manipuler des bases de données. Dans un système de gestion de base de données relationnel-objet (SGBDRO) l'information est représentée sous forme d'objets comme dans la programmation orientée objet. Un SGBDRO rend les objets de la base de données accessibles aux langages orientés-objets comme s'il s'agissait d'objets de ces langages.
Object modelIn computing, object model has two related but distinct meanings: The properties of objects in general in a specific computer programming language, technology, notation or methodology that uses them. Examples are the object models of Java, the Component Object Model (COM), or Object-Modeling Technique (OMT). Such object models are usually defined using concepts such as class, generic function, message, inheritance, polymorphism, and encapsulation.
Test de validationUn test de validation est un type de test informatique qui permet de vérifier si toutes les exigences client, décrites dans le document de spécification du logiciel, sont respectées. Les tests de validation se décomposent généralement en plusieurs phases : Validation fonctionnelle : les tests fonctionnels assurent que les différents modules ou composants implémentent correctement les exigences client. Ces tests peuvent être de type valide, invalide, inopportuns, etc.
Object lifetimeIn object-oriented programming (OOP), the object lifetime (or life cycle) of an object is the time between an object's creation and its destruction. Rules for object lifetime vary significantly between languages, in some cases between implementations of a given language, and lifetime of a particular object may vary from one run of the program to another. In some cases, object lifetime coincides with variable lifetime of a variable with that object as value (both for static variables and automatic variables), but in general, object lifetime is not tied to the lifetime of any one variable.
Méthode formelle (informatique)En informatique, les méthodes formelles sont des techniques permettant de raisonner rigoureusement, à l'aide de logique mathématique, sur un programme informatique ou du matériel électronique numérique, afin de démontrer leur validité par rapport à une certaine spécification. Elles reposent sur les sémantiques des programmes, c'est-à-dire sur des descriptions mathématiques formelles du sens d'un programme donné par son code source (ou, parfois, son code objet).
Mapping objet-relationnelUn mapping objet-relationnel (en anglais object-relational mapping ou ORM) est un type de programme informatique qui se place en interface entre un programme applicatif et une base de données relationnelle pour simuler une base de données orientée objet. Ce programme définit des correspondances entre les schémas de la base de données et les classes du programme applicatif. On pourrait le désigner par là « comme une couche d'abstraction entre le monde objet et monde relationnel ».
Is-aAn is-a relationship is when one type of object 'is a' instance of another type of object. For example, a cat 'is a' animal, but not vice versa. All cats are animals, but not all animals are cats. The concept becomes important in object oriented programing, where 'is a' relationships are often used as a way to structure code - behaviour that are is relevant to all animals is defined on an animal class, whereas behaviour that is relevant only for cats is defined in a cat class.
Vérification formelleIn the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Ensemblevignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).