La théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du .
La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
En plus de proposer un fondement aux mathématiques, Cantor introduisit avec la théorie des ensembles des concepts radicalement nouveaux, et notamment l'idée qu'il existe plusieurs types d'infini que l'on peut mesurer et comparer au moyen de nouveaux nombres (ordinaux et cardinaux).
À cause de sa modernité, la théorie des ensembles fut âprement controversée, notamment parce qu'elle postulait l'existence d'ensembles infinis, en contradiction avec certains principes des mathématiques constructives ou intuitionnistes. Au début du , plusieurs facteurs ont poussé les mathématiciens à développer une axiomatique pour la théorie des ensembles : la découverte de paradoxes tels que le paradoxe de Russell, mais surtout le questionnement autour de l'hypothèse du continu qui nécessitait une définition précise de la notion d'ensemble. Cette approche formelle conduisit à plusieurs systèmes axiomatiques, le plus connu étant les axiomes de ZF, mais également la théorie des classes de von Neumann ou la théorie des types de Russell.
Cantor est le principal créateur de la théorie des ensembles qu'il a introduite au début des années 1880. C'est en travaillant sur des problèmes d'unicité des séries trigonométriques dans les années 1870 que Cantor a été amené à définir une notion de dérivation des ensembles de nombres réels : étant donné un ensemble de réels, son dérivé est duquel on a supprimé tous les points isolés. Par exemple si on prend l'ensemble alors chaque nombre est isolé dans si bien que est simplement .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, un ensemble fini est un ensemble qui possède un nombre fini d'éléments, c'est-à-dire qu'il est possible de compter ses éléments, le résultat étant un nombre entier. Un ensemble infini est un ensemble qui n'est pas fini. Ainsi l'ensemble des chiffres usuels (en base dix) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} qui possède 10 éléments, est fini. De même l'ensemble des lettres de l'alphabet qui possède 26 éléments. L'ensemble de tous les nombres entiers naturels {0, 1, 2, 3,..., 10,..., 100,...
Georg Cantor est un mathématicien allemand, né le à Saint-Pétersbourg (Empire russe) et mort le à Halle (Empire allemand). Il est connu pour être le créateur de la théorie des ensembles. Il établit l'importance de la bijection entre les ensembles, définit les ensembles infinis et les ensembles bien ordonnés. Il prouva également que les nombres réels sont « plus nombreux » que les entiers naturels. En fait, le théorème de Cantor implique l'existence d'une « infinité d'infinis ».
La théorie des modèles est une branche de la logique mathématique qui traite de la construction et de la classification des structures. Elle définit en particulier les modèles des théories axiomatiques, l'objectif étant d'interpréter les structures syntaxiques (termes, formules, démonstrations...) dans des structures mathématiques (ensemble des entiers naturels, groupes, univers...) de façon à leur associer des concepts de nature sémantique (comme le sens ou la vérité).
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Develop your promising idea into a successful business concept proposal, and launch it! Gain practical experience in the key steps of the venture creation process, including marketing and fundraising.
Develop your promising idea into a successful business concept proposal, and launch it! Gain practical experience in the key steps of the venture creation process, including marketing and fundraising.
Les couvertures établissent les principes fondamentaux, les opérations et la cardinalité, y compris la notation, l'égalité, les sous-ensembles et les opérations comme l'union et l'intersection.
In this note, we study certain sufficient conditions for a set of minimal klt pairs ( X, triangle) with kappa ( X, triangle) = dim( X ) - 1 to be bounded. ...
We study the hitting probabilities of the solution to a system of d stochastic heat equations with additive noise subject to Dirichlet boundary conditions. We show that for any bounded Borel set with positive (d-6)\documentclass[12pt]{minimal} \usepackage{ ...
In this article, we propose a dynamical system to avoid obstacles which are star shaped and simultaneously converge to a goal. The convergence is almost-global in a domain and the stationary points are identified explicitly. Our approach is based on the id ...